Python多进程的实现
off999 2025-04-29 03:19 6 浏览 0 评论
在 Python 中使用多进程主要通过内置的 `multiprocessing` 模块。下面介绍几种常用的方式:
**1. 使用 `Process` 类(基础方式)**
这是最基本的方式,手动创建和管理进程。
```python
import multiprocessing
import time
import os
# 定义子进程要执行的任务函数
def worker(num):
"""子进程执行的任务"""
pid = os.getpid() # 获取当前进程ID
print(f'Worker {num} started, PID: {pid}')
time.sleep(num) # 模拟耗时操作
print(f'Worker {num} finished, PID: {pid}')
if __name__ == '__main__':
print(f'Main process started, PID: {os.getpid()}')
# 创建进程列表
processes = []
for i in range(1, 4): # 创建 3 个子进程
# 创建 Process 对象
# target=worker 指定子进程要执行的函数
# args=(i,) 是传递给 worker 函数的参数 (注意是元组)
p = multiprocessing.Process(target=worker, args=(i,))
processes.append(p)
p.start() # 启动进程
print('All processes started.')
# 等待所有子进程结束
# join() 会阻塞主进程,直到子进程执行完毕
for p in processes:
p.join()
print('All processes finished. Main process exiting.')
# --- 重要说明 ---
# if __name__ == '__main__': 这行代码非常重要!
# 在创建子进程时,子进程会导入主模块的代码。
# 如果没有这行保护,创建进程的代码会被子进程再次执行,导致无限创建进程(尤其在 Windows 上)。
# 所以,所有创建和启动进程的代码都应该放在这个 if 语句块内。
```
**工作流程:**
1. `import multiprocessing`:导入模块。
2. `def worker(num):`:定义子进程要执行的代码逻辑。
3. `if __name__ == '__main__':`:保护入口点(非常重要)。
4. `p = multiprocessing.Process(target=worker, args=(i,))`:创建一个 `Process` 对象,指定目标函数 (`target`) 和参数 (`args`)。
5. `p.start()`:启动子进程。此时子进程开始执行 `worker` 函数。
6. `p.join()`:主进程等待子进程 `p` 执行结束。如果不调用 `join()`,主进程可能会在子进程完成前就退出了。
**2. 使用 `Pool` 类(进程池,推荐用于批量任务)**
当你有很多相似的任务需要并行处理时,手动管理 `Process` 对象会很繁琐。`Pool` 可以创建一个固定数量的进程池,自动管理任务的分配和进程的复用。
```python
import multiprocessing
import time
import os
def square(x):
"""计算平方的任务"""
pid = os.getpid()
result = x * x
print(f'Task {x} processed by PID: {pid}, result: {result}')
time.sleep(1) # 模拟耗时
return result
if __name__ == '__main__':
print(f'Main process started, PID: {os.getpid()}')
# 创建一个包含 3 个进程的进程池
# 如果不指定数量,通常会根据 CPU 核心数创建
pool = multiprocessing.Pool(processes=3)
tasks = range(10) # 要处理的任务数据
# --- 常用方法 ---
# 1. map: 阻塞方式,将任务分配给进程池,等待所有结果返回
# 它会将 tasks 列表中的每个元素传递给 square 函数
print("Using pool.map():")
results_map = pool.map(square, tasks)
print(f"Map results: {results_map}")
print("-" * 20)
# 2. apply_async: 异步方式,提交任务,不阻塞主进程
# 需要手动获取结果
print("Using pool.apply_async():")
async_results = []
for task in tasks:
# 提交任务到进程池,返回一个 AsyncResult 对象
result_obj = pool.apply_async(square, args=(task,))
async_results.append(result_obj)
# 获取异步任务的结果
# result_obj.get() 会阻塞,直到该任务完成并返回结果
final_results_async = [res.get() for res in async_results]
print(f"Async results: {final_results_async}")
print("-" * 20)
# --- 关闭进程池 ---
# close() 告诉进程池不再接受新的任务
pool.close()
# join() 等待进程池中所有任务执行完毕(必须在 close() 之后调用)
pool.join()
print('All tasks finished. Main process exiting.')
```
**`Pool` 的关键点:**
* `multiprocessing.Pool(processes=N)`:创建包含 N 个工作进程的池。
* `pool.map(func, iterable)`:将 `iterable` 中的每个元素作为参数传递给 `func` 函数,并行执行,然后收集所有结果并返回一个列表。**这是阻塞的**,会等到所有任务完成。
* `pool.apply_async(func, args=(...))`:异步提交单个任务。它立即返回一个 `AsyncResult` 对象,你可以稍后通过该对象的 `get()` 方法获取结果。**这是非阻塞的**。
* `pool.close()`:关闭进程池,使其不再接受新任务。
* `pool.join()`:等待所有工作进程退出。通常在 `close()` 之后调用。
**3. 进程间通信 (IPC - Inter-Process Communication)**
由于进程拥有独立的内存空间,它们不能像线程那样直接共享变量。如果进程间需要交换数据,需要使用特殊的 IPC 机制,`multiprocessing` 模块提供了几种方式:
* **`Queue`:** 线程/进程安全的队列,用于在多个生产者和消费者进程之间传递消息(对象)。
* **`Pipe`:** 返回一对连接的 `Connection` 对象,代表管道的两端,可以用于两个进程之间的双向通信。
* **`Value` / `Array`:** 用于在进程间共享简单的 C 类型数据(如整数、浮点数、字符数组),需要配合锁(`Lock`)来保证同步。
* **`Manager`:** 提供一种更高级的方式来共享 Python 对象(如列表、字典)。它启动一个管理进程来维护这些共享对象,并允许其他进程通过代理访问它们,内部处理了同步问题。
**`Queue` 示例:**
```python
import multiprocessing
import time
def writer(q):
"""向队列写入数据"""
print(f'Writer process started (PID: {os.getpid()})')
for i in ['A', 'B', 'C', 'D']:
print(f'Putting {i} into queue')
q.put(i)
time.sleep(0.5)
q.put(None) # 发送结束信号
def reader(q):
"""从队列读取数据"""
print(f'Reader process started (PID: {os.getpid()})')
while True:
item = q.get() # 获取数据,如果队列为空会阻塞
if item is None: # 收到结束信号
print('Reader received None, exiting.')
break
print(f'Got {item} from queue')
time.sleep(1)
if __name__ == '__main__':
# 创建一个进程安全的队列
q = multiprocessing.Queue()
# 创建并启动读写进程
p_writer = multiprocessing.Process(target=writer, args=(q,))
p_reader = multiprocessing.Process(target=reader, args=(q,))
p_writer.start()
p_reader.start()
# 等待进程结束
p_writer.join()
p_reader.join()
print("Main process finished.")
```
**总结:**
* 对于简单地并行执行几个独立的任务,使用 `Process` 类。
* 对于大量相似的任务,需要高效管理和复用进程,使用 `Pool` 类(通常更方便)。
* 当进程之间需要交换数据时,使用 `Queue`、`Pipe` 或 `Manager` 等 IPC 机制。
* **永远记住** 将创建和启动进程的代码放在 `if __name__ == '__main__':` 块内。
选择哪种方式取决于你的具体需求。对于利用多核 CPU 进行计算密集型任务,`Pool` 通常是比较好的选择。
相关推荐
- Python 数据分析——利用Pandas进行分组统计
-
话说天下大势,分久必合,合久必分。数据分析也是如此,我们经常要对数据进行分组与聚合,以对不同组的数据进行深入解读。本章将介绍如何利用Pandas中的GroupBy操作函数来完成数据的分组、聚合以及统计...
- python数据分析:介绍pandas库的数据类型Series和DataFrame
-
安装pandaspipinstallpandas-ihttps://mirrors.aliyun.com/pypi/simple/使用pandas直接导入即可importpandasas...
- 使用DataFrame计算两列的总和和最大值_[python]
-
【如果对您有用,请关注并转发,谢谢~~】最近在处理气象类相关数据的空间计算,在做综合性计算的时候,DataFrame针对每列的统计求和、最大值等较为方便,对某行的两列或多列数据进行求和与最大值等的简便...
- 8-Python内置函数
-
Python提供了丰富的内置函数,这些函数可以直接使用而无需导入任何模块。以下是一些常用的内置函数及其示例:1-print()1-1-说明输出指定的信息到控制台。1-2-例子2-len()2-1-说...
- Python中函数式编程函数: reduce()函数
-
Python中的reduce()函数是一个强大的工具,它通过连续地将指定的函数应用于序列(如列表)来对序列(如列表)执行累积操作。它是functools模块的一部分,这意味着您需要在使用它之...
- 万万没想到,除了香农计划,Python3.11竟还有这么多性能提升
-
众所周知,Python3.11版本带来了较大的性能提升,但是,它具体在哪些方面上得到了优化呢?除了著名的“香农计划”外,它还包含哪些与性能相关的优化呢?本文将带你一探究竟!作者:BeshrKay...
- 最全python3.11版12类75个内置函数大全
-
获取全部内置函数:importbuiltins#导入模块yc=[]#异常属性nc=[]#不可调用fn=[]#内置函数defll(ty=builtins):...
- 软件测试笔试题
-
测试工程师岗位,3-5年,10-14k1.我司有一款产品,类似TeamViewer,向日葵,mstsc,QQ远程控制产品,一个PC客户端产品,请设想一下测试要点。并写出2.写出常用的SQL语句8条,l...
- 备战各大互联网巨头公司招聘会,最全Python面试大全,共300题
-
前言众所周知,越是顶尖的互联网公司在面试这一part的要求就越高,需要你有很好的技术功底、项目经验、一份漂亮的简历,当然还有避免不了的笔试过关。对于Python的工程师来说,全面掌握好有关Python...
- 经典 SQL 数据库笔试题及答案整理
-
马上又是金三银四啦,有蛮多小伙伴在跳槽找工作,但对于年限稍短的软件测试工程师,难免会需要进行笔试,而在笔试中,基本都会碰到一道关于数据库的大题,今天这篇文章呢,就收录了下最近学员反馈上来的一些数据库笔...
- 用Python开发日常小软件,让生活与工作更高效!附实例代码
-
引言:Python如何让生活更轻松?在数字化时代,编程早已不是程序员的专属技能。Python凭借其简洁易学的特点,成为普通人提升效率、解决日常问题的得力工具。无论是自动化重复任务、处理数据,还是开发个...
- 太牛了!102个Python实战项目被我扒到了!建议收藏!
-
挖到宝了!整整102个Python实战项目合集,从基础语法到高阶应用全覆盖,附完整源码+数据集,手把手带你从代码小白变身实战大神!这波羊毛不薅真的亏到哭!超全项目库,学练一站式搞定这份资...
- Python中的并发编程
-
1.Python对并发编程的支持多线程:threading,利用CPU和IO可以同时执行的原理,让CPU不会干巴巴等待IO完成。多进程:multiprocessing,利用多核CPU...
- Python 也有内存泄漏?
-
1.背景前段时间接手了一个边缘视觉识别的项目,大功能已经开发的差不多了,主要是需要是优化一些性能问题。其中比较突出的内存泄漏的问题,而且不止一处,有些比较有代表性,可以总结一下。为了更好地可视化内存...
- python爬虫之多线程threading、多进程、协程aiohttp批量下载图片
-
一、单线程常规下载常规单线程执行脚本爬取壁纸图片,只爬取一页的图片。importdatetimeimportreimportrequestsfrombs4importBeautifu...
你 发表评论:
欢迎- 一周热门
-
-
python 3.8调用dll - Could not find module 错误的解决方法
-
加密Python源码方案 PyArmor(python项目源码加密)
-
Python3.8如何安装Numpy(python3.6安装numpy)
-
大学生机械制图搜题软件?7个受欢迎的搜题分享了
-
编写一个自动生成双色球号码的 Python 小脚本
-
免费男女身高在线计算器,身高计算公式
-
将python文件打包成exe程序,复制到每台电脑都可以运行
-
Python学习入门教程,字符串函数扩充详解
-
Python数据分析实战-使用replace方法模糊匹配替换某列的值
-
Python进度条显示方案(python2 进度条)
-
- 最近发表
- 标签列表
-
- python计时 (54)
- python安装路径 (54)
- python类型转换 (75)
- python进度条 (54)
- python的for循环 (56)
- python串口编程 (60)
- python写入txt (51)
- python读取文件夹下所有文件 (59)
- java调用python脚本 (56)
- python操作mysql数据库 (66)
- python字典增加键值对 (53)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python qt (52)
- python人脸识别 (54)
- python斐波那契数列 (51)
- python多态 (60)
- python命令行参数 (53)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- centos7安装python (53)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)