百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

Python绘图库讲解:4大常用库你准备学哪个?

off999 2024-09-26 16:06 23 浏览 0 评论

黄伟呢 | 作者

数据分析与统计学之美 | 来源


为什么要写这篇文章?

最近有不少粉丝来问我,Python绘图库太多,我知不知道学哪一个?即使我选择了某一个绘图库后,我也不知道怎么学,我不知道第一步做什么,也不知道接下来该怎么做,四个字一学就忘。

其实这也是我当时很困扰的一个问题,我当时在学习完numpy和pandas后,就开始了matplotlib的学习。我反正是非常崩溃的,每次就感觉绘图代码怎么这么多,绘图逻辑完全一团糟,不知道如何动手。

后面随着自己反复的学习,我找到了学习Python绘图库的方法,那就是学习它的绘图原理。正所谓:“知己知彼,百战不殆”,学会了原理,剩下的就是熟练的问题了。

今天我们就用一篇文章,带大家梳理matplotlibseabornplotlypyecharts的绘图原理,让大家学起来不再那么费劲!


1matplotlib绘图原理

1. 绘图原理说明

通过我自己的学习和理解,我将matplotlib绘图原理高度总结为如下几步:

  • 导库
  • 创建figure画布对象
  • 获取对应位置的axes坐标系对象
  • 调用axes对象,进行对应位置的图形绘制
  • 显示图形

2. 案例说明

# 1.导入相关库
import matplotlib as mpl
import matplotlib.pyplot as plt
# 2.创建figure画布对象
figure = plt.figure()
# 3.获取对应位置的axes坐标系对象
axes1 = figure.add_subplot(2,1,1)
axes2 = figure.add_subplot(2,1,2)
# 4.调用axes对象,进行对应位置的图形绘制
axes1.plot([1,3,5,7],[4,9,6,8])
axes2.plot([1,2,4,5],[8,4,6,2])
# 5.显示图形
figure.show()

结果如下:

2seaborn绘图原理

在这四个绘图库里面,只有matplotlib和seaborn存在一定的联系,其余绘图库之间都没有任何联系,就连绘图原理也都是不一样的。

seaborn是matplotlib的更高级的封装。因此学习seaborn之前,首先要知道matplotlib的绘图原理。由于seaborn是matplotlib的更高级的封装,对于matplotlib的那些调优参数设置,也都可以在使用seaborn绘制图形之后使用。

我们知道,使用matplotlib绘图,需要调节大量的绘图参数,需要记忆的东西很多。而seaborn基于matplotlib做了更高级的封装,使得绘图更加容易,它不需要了解大量的底层参数,就可以绘制出很多比较精致的图形。不仅如此,seaborn还兼容numpy、pandas数据结构,在组织数据上起了很大作用,从而更大程度上的帮助我们完成数据可视化。

由于seaborn的绘图原理,和matplotlib的绘图原理一致,这里也就不详细介绍了,大家可以参考上面matplotlib的绘图原理,来学习seaborn究竟如何绘图。

1. 案例说明

# 1.导入相关库
import seaborn as sns
import matplotlib.pyplot as plt

df = pd.read_excel("data.xlsx",sheet_name="数据源")

sns.set_style("dark")
plt.rcParams["font.sans-serif"] = ["SimHei"]
plt.rcParams["axes.unicode_minus"] = False
# 注意:estimator表示对分组后的销售数量求和。默认是求均值。
sns.barplot(x="品牌",y="销售数量",data=df,color="steelblue",orient="v",estimator=sum)
plt.show()

结果如下:

注意:可以看到在上述的绘图代码中,你应该有这样一个感受,图中既有matplotlib的绘图代码,也有seaborn的绘图代码。其实就是这样的,我们就是按照matplobt的绘图原理进行图形绘制,只是有些地方改成seaborn特有的代码即可,剩下的调整格式,都可以使用matplotlib中的方法进行调整。

3plotly绘图原理

首先在介绍这个图的绘图原理之前,我们先简单介绍一下plotly这个绘图库:

  • plotly是一个基于javascript的绘图库,plotly绘图种类丰富,效果美观
  • 易于保存与分享plotly的绘图结果,并且可以与Web无缝集成
  • ploty默认的绘图结果,是一个HTML网页文件,通过浏览器可以直接查看

它的绘图原理和matplotlib、seaborn没有任何关系,你需要单独去学习它。

1. 绘图原理说明

通过我自己的学习和理解,我将plotly绘图原理高度总结为如下几步:

  • 绘制图形轨迹,在ployly里面叫做trace,每一个轨迹是一个trace
  • 将轨迹包裹成一个列表,形成一个“轨迹列表”。一个轨迹放在一个列表中,多个轨迹也是放在一个列表中
  • 创建画布的同时,并将上述的轨迹列表,传入到Figure()
  • 使用Layout()添加其他的绘图参数,完善图形
  • 展示图形

2. 案例说明

import numpy as np
import pandas as pd
import plotly as py
import plotly.graph_objs as go
import plotly.expression as px
from plotly import tools

df = pd.read_excel("plot.xlsx")
# 1.绘制图形轨迹,在ployly里面叫做`trace`,每一个轨迹是一个trace。
trace0 = go.Scatter(x=df["年份"],y=df["城镇居民"],name="城镇居民")
trace1 = go.Scatter(x=df["年份"],y=df["农村居民"],name="农村居民")
# 2.将轨迹包裹成一个列表,形成一个“轨迹列表”。一个轨迹放在一个列表中,多个轨迹也是放在一个列表中。
data = [trace0,trace1]
# 3.创建画布的同时,并将上述的`轨迹列表`,传入到`Figure()`中。
fig = go.Figure(data)
# 4.使用`Layout()`添加其他的绘图参数,完善图形。
fig.update_layout(
    title="城乡居民家庭人均收入",
    xaxis_title="年份",
    yaxis_title="人均收入(元)"
)
# 5.展示图形。
fig.show()

结果如下:

4pyecharts绘图原理

Echarts是一个由百度开源的数据可视化工具,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可。而python是一门富有表达力的语言,很适合用于数据处理。当数据分析遇上了数据可视化时,pyecharts诞生了。

pyecharts分为v0.5和v1两个大版本,v0.5和v1两个版本不兼容,v1是一个全新的版本,因此我们的学习尽量都是基于v1版本进行操作。

和plotly一样,pyecharts的绘图原理也是完全不同于matplotlib和seaborn,我们需要额外的去学习它们的绘图原理

1. 绘图原理说明

通过我自己的学习和理解,我将plotly绘图原理高度总结为如下几步:

  • 选择图表类型
  • 声明图形类并添加数据
  • 选择全局变量
  • 显示及保存图表

2. 案例说明

# 1.选择图表类型:我们使用的是线图,就直接从charts模块中导入Line这个模块;
from pyecharts.charts import Line
import pyecharts.options as opts
import numpy as np

x = np.linspace(0,2 * np.pi,100)
y = np.sin(x)

(
 # 2.我们绘制的是Line线图,就需要实例化这个图形类,直接Line()即可;
 Line()
 # 3.添加数据,分别给x,y轴添加数据;
 .add_xaxis(xaxis_data=x)
 .add_yaxis(series_name="绘制线图",y_axis=y,label_opts=opts.LabelOpts(is_show=False))
 .set_global_opts(title_opts=opts.TitleOpts(title="我是标题",subtitle="我是副标题",title_link="https://www.baidu.com/"),
                  tooltip_opts=opts.TooltipOpts())
).render_notebook() # 4.render_notebook()用于显示及保存图表;

结果如下:

5小 结

通过上面的学习,我相信肯定会让大家对于这些库的绘图原理,一定会有一个新的认识。

其实其实不管是任何编程软件的绘图库,都有它的绘图原理。我们与其盲目的去绘制各种各样的图形,不如先搞清楚它们的套路后,再去进行绘图库的图形练习,这样下去,我觉得大家会有一个很大的提高。

- END -

本文已获得作者授权发布,二次转载请联系原作者

相关推荐

Python 数据分析——利用Pandas进行分组统计

话说天下大势,分久必合,合久必分。数据分析也是如此,我们经常要对数据进行分组与聚合,以对不同组的数据进行深入解读。本章将介绍如何利用Pandas中的GroupBy操作函数来完成数据的分组、聚合以及统计...

python数据分析:介绍pandas库的数据类型Series和DataFrame

安装pandaspipinstallpandas-ihttps://mirrors.aliyun.com/pypi/simple/使用pandas直接导入即可importpandasas...

使用DataFrame计算两列的总和和最大值_[python]

【如果对您有用,请关注并转发,谢谢~~】最近在处理气象类相关数据的空间计算,在做综合性计算的时候,DataFrame针对每列的统计求和、最大值等较为方便,对某行的两列或多列数据进行求和与最大值等的简便...

8-Python内置函数

Python提供了丰富的内置函数,这些函数可以直接使用而无需导入任何模块。以下是一些常用的内置函数及其示例:1-print()1-1-说明输出指定的信息到控制台。1-2-例子2-len()2-1-说...

Python中函数式编程函数: reduce()函数

Python中的reduce()函数是一个强大的工具,它通过连续地将指定的函数应用于序列(如列表)来对序列(如列表)执行累积操作。它是functools模块的一部分,这意味着您需要在使用它之...

万万没想到,除了香农计划,Python3.11竟还有这么多性能提升

众所周知,Python3.11版本带来了较大的性能提升,但是,它具体在哪些方面上得到了优化呢?除了著名的“香农计划”外,它还包含哪些与性能相关的优化呢?本文将带你一探究竟!作者:BeshrKay...

最全python3.11版12类75个内置函数大全

获取全部内置函数:importbuiltins#导入模块yc=[]#异常属性nc=[]#不可调用fn=[]#内置函数defll(ty=builtins):...

软件测试笔试题

测试工程师岗位,3-5年,10-14k1.我司有一款产品,类似TeamViewer,向日葵,mstsc,QQ远程控制产品,一个PC客户端产品,请设想一下测试要点。并写出2.写出常用的SQL语句8条,l...

备战各大互联网巨头公司招聘会,最全Python面试大全,共300题

前言众所周知,越是顶尖的互联网公司在面试这一part的要求就越高,需要你有很好的技术功底、项目经验、一份漂亮的简历,当然还有避免不了的笔试过关。对于Python的工程师来说,全面掌握好有关Python...

经典 SQL 数据库笔试题及答案整理

马上又是金三银四啦,有蛮多小伙伴在跳槽找工作,但对于年限稍短的软件测试工程师,难免会需要进行笔试,而在笔试中,基本都会碰到一道关于数据库的大题,今天这篇文章呢,就收录了下最近学员反馈上来的一些数据库笔...

用Python开发日常小软件,让生活与工作更高效!附实例代码

引言:Python如何让生活更轻松?在数字化时代,编程早已不是程序员的专属技能。Python凭借其简洁易学的特点,成为普通人提升效率、解决日常问题的得力工具。无论是自动化重复任务、处理数据,还是开发个...

太牛了!102个Python实战项目被我扒到了!建议收藏!

挖到宝了!整整102个Python实战项目合集,从基础语法到高阶应用全覆盖,附完整源码+数据集,手把手带你从代码小白变身实战大神!这波羊毛不薅真的亏到哭!超全项目库,学练一站式搞定这份资...

Python中的并发编程

1.Python对并发编程的支持多线程:threading,利用CPU和IO可以同时执行的原理,让CPU不会干巴巴等待IO完成。多进程:multiprocessing,利用多核CPU...

Python 也有内存泄漏?

1.背景前段时间接手了一个边缘视觉识别的项目,大功能已经开发的差不多了,主要是需要是优化一些性能问题。其中比较突出的内存泄漏的问题,而且不止一处,有些比较有代表性,可以总结一下。为了更好地可视化内存...

python爬虫之多线程threading、多进程、协程aiohttp批量下载图片

一、单线程常规下载常规单线程执行脚本爬取壁纸图片,只爬取一页的图片。importdatetimeimportreimportrequestsfrombs4importBeautifu...

取消回复欢迎 发表评论: