百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

Python可视化Seaborn库详解——绘图方法

off999 2024-09-26 16:06 16 浏览 0 评论

在《Python可视化Seaborn库详解——绘图设置 》一文中,我们介绍了Seaborn库的绘图参数设置,本文我们将介绍具体的绘图方法。

其实虽然Seaborn库看着绘图函数多,但有几个函数的泛化性非常强,通过参数的设置是可以绘出多种图形的。为了便于掌握这些函数,本文会对这些方法进行归纳整理,力争做到提纲挈领的目的。


绘图方法分类


结合图形的性质,将常规的可视化图形分为了三类。

其中,线性关系所涉及到的是折线图和散点图,这两类图形在日常运用中非常常见;分类关系主要是描述不同维度下数据的统计结果,如条形图、箱图等;组合关系就类似于高级程序语言,它是由不同的基础图形组合而来的。

下面我们将一一介绍这些绘图方法。


线性关系可视化


我们用泰坦尼克号数据作为案例,首先进行数据准备。

import seaborn as sns
import pandas as pd
import numpy as np
data_raw=pd.read_csv("数据源/Titanic/train.csv")
df=data_raw.copy()
df.columns=[x.lower() for x in df.columns]
  • relplot
    relplot函数和待会要介绍的catplot函数一样,均是属于一般型方法,它通过kind参数可分别作折线图和散点图,而且也可通过col和row参数进行分面。另外,该函数要求的数据格式必须是DataFrame。下图为该函数的绘图。
sns.relplot(x="passengerid",y="age",col="pclass",hue=None,
            row=None,kind='scatter',data=df)
#kind为line,scatter;col表示按照该列进行分列绘图

#下面是具体的折线图和散点图函数,但这两种方法均不能进行分面
sns.lineplot(x="passengerid",y="age",data=df)
sns.scatterplot(x="passengerid",y="age",data=df)


分类关系可视化


分类关系有两个一般性绘图方法:catplot和distplot。

  • catplot

该函数可以绘制八种分类图,并可以进行分面。每种分类图也有相应的函数,可以进行更细致的参数设置,但均不能进行分面。

sns.catplot(x="survived",y="age",hue=None,row=None,col=None,
              data=df,kind=j,ax=axes[i]) 
#hue对X轴进行二次分组,row按行分面,row按列分面,kind控制图形种类,
#有strip,swarm,box,violin,boxen,point,bar,count,strip为默认值

fig,axes=plt.subplots(3,3,figsize=(30,24))
ax=axes.flatten()
sns.stripplot(x="survived",y="age",data=df,ax=ax[0]) #条形散点图
sns.swarmplot(x="survived",y="age",data=df,ax=ax[1]) #避免散点重叠的条形散点图
sns.boxplot(x="survived",y="age",data=df,ax=ax[2]) #箱线图
sns.countplot(x="survived",data=df,ax=ax[3]) #统计图
sns.barplot(x="survived",y="age",data=df,ax=ax[4]) #条形图
sns.violinplot(x="survived",y="age",data=df,ax=ax[5]) #小提琴图
sns.boxenplot(x="survived",y="age",data=df,ax=ax[6]) #增强箱图
sns.pointplot(x="survived",y="age",data=df,ax=ax[7]) #点图

上图为八种不同的分类图。

  • distplot

直方图是较为特殊的分类关系图,虽然它属于分布函数,但也可视为一种分类。该函数通过hist和kde参数可控制绘制的图是直方图还是密度图,或是二者的结合。

fig,axes=plt.subplots(1,2,figsize=(12,5))
sns.distplot(df["age"],bins=[0,20,40,60,80,100],hist=True,kde=False,ax=axes[0]) 
sns.distplot(df["age"],bins=[0,20,40,60,80,100],hist=False,kde=True,ax=axes[1]) 


sns.kdeplot(df["age"],shade=True,vertical=False) 
#核密度曲线


组合关系可视化


组合关系包含的都是一些较为复杂的图,本文介绍三种。

  • pairplot

该函数主要描述数据变量两两之间的关系图,默认都是散点图。

sns.heatmap(data=df[["age","sex","pclass","fare"]].corr(),linecolor="white",annot=True,linewidths=0.1,cmap='YlGnBu')
#cmap即colormap plt的颜色对象,annot系数值是否显示,
#矩阵数据集,行为矩阵的列名称,列为矩阵的行索引,如果是dataframe,则行为行索引
  • heatmap

热力图是一款非常热门的图形,通过颜色来反映数据之间的关系。

sns.heatmap(data=df[["age","sex","pclass","fare"]].corr(),linecolor="white",
            annot=True,linewidths=0.1)
#annot系数值是否显示
#data最后是矩阵数据集,图形的行为矩阵的列,列为矩阵的行索引,如果是dataframe,则行为行索引


  • factorplot与FacetGrid

这是两个分面函数,分面的意思就是在一张画布中画多个图形。

sns.factorplot(x="survived", y="age",row="sex",col="pclass", 
               data=df, kind="strip")
#多面板绘图
g=sns.FacetGrid(data=df,row="sex",col="pclass") #先画出轮廓
g.map(sns.stripplot,"survived","age") #进行补充

其实这些分面图形通过catplot方面也是可以实现的。

sns.catplot(x="survived",y="age",col="pclass",hue=None,
            row="sex",kind='strip',data=df)



结语


将这些方法进行归类后就会发现,熟记并掌握这些函数变得容易多了。其实,可视化的原理并不复杂,复杂的只是绘图细节部分。因为每种组成部分都有众多的参数,参数还有不同的取值。

当然了,常规的可视化需求我们采用默认设置就足够了!

相关推荐

Python 数据分析——利用Pandas进行分组统计

话说天下大势,分久必合,合久必分。数据分析也是如此,我们经常要对数据进行分组与聚合,以对不同组的数据进行深入解读。本章将介绍如何利用Pandas中的GroupBy操作函数来完成数据的分组、聚合以及统计...

python数据分析:介绍pandas库的数据类型Series和DataFrame

安装pandaspipinstallpandas-ihttps://mirrors.aliyun.com/pypi/simple/使用pandas直接导入即可importpandasas...

使用DataFrame计算两列的总和和最大值_[python]

【如果对您有用,请关注并转发,谢谢~~】最近在处理气象类相关数据的空间计算,在做综合性计算的时候,DataFrame针对每列的统计求和、最大值等较为方便,对某行的两列或多列数据进行求和与最大值等的简便...

8-Python内置函数

Python提供了丰富的内置函数,这些函数可以直接使用而无需导入任何模块。以下是一些常用的内置函数及其示例:1-print()1-1-说明输出指定的信息到控制台。1-2-例子2-len()2-1-说...

Python中函数式编程函数: reduce()函数

Python中的reduce()函数是一个强大的工具,它通过连续地将指定的函数应用于序列(如列表)来对序列(如列表)执行累积操作。它是functools模块的一部分,这意味着您需要在使用它之...

万万没想到,除了香农计划,Python3.11竟还有这么多性能提升

众所周知,Python3.11版本带来了较大的性能提升,但是,它具体在哪些方面上得到了优化呢?除了著名的“香农计划”外,它还包含哪些与性能相关的优化呢?本文将带你一探究竟!作者:BeshrKay...

最全python3.11版12类75个内置函数大全

获取全部内置函数:importbuiltins#导入模块yc=[]#异常属性nc=[]#不可调用fn=[]#内置函数defll(ty=builtins):...

软件测试笔试题

测试工程师岗位,3-5年,10-14k1.我司有一款产品,类似TeamViewer,向日葵,mstsc,QQ远程控制产品,一个PC客户端产品,请设想一下测试要点。并写出2.写出常用的SQL语句8条,l...

备战各大互联网巨头公司招聘会,最全Python面试大全,共300题

前言众所周知,越是顶尖的互联网公司在面试这一part的要求就越高,需要你有很好的技术功底、项目经验、一份漂亮的简历,当然还有避免不了的笔试过关。对于Python的工程师来说,全面掌握好有关Python...

经典 SQL 数据库笔试题及答案整理

马上又是金三银四啦,有蛮多小伙伴在跳槽找工作,但对于年限稍短的软件测试工程师,难免会需要进行笔试,而在笔试中,基本都会碰到一道关于数据库的大题,今天这篇文章呢,就收录了下最近学员反馈上来的一些数据库笔...

用Python开发日常小软件,让生活与工作更高效!附实例代码

引言:Python如何让生活更轻松?在数字化时代,编程早已不是程序员的专属技能。Python凭借其简洁易学的特点,成为普通人提升效率、解决日常问题的得力工具。无论是自动化重复任务、处理数据,还是开发个...

太牛了!102个Python实战项目被我扒到了!建议收藏!

挖到宝了!整整102个Python实战项目合集,从基础语法到高阶应用全覆盖,附完整源码+数据集,手把手带你从代码小白变身实战大神!这波羊毛不薅真的亏到哭!超全项目库,学练一站式搞定这份资...

Python中的并发编程

1.Python对并发编程的支持多线程:threading,利用CPU和IO可以同时执行的原理,让CPU不会干巴巴等待IO完成。多进程:multiprocessing,利用多核CPU...

Python 也有内存泄漏?

1.背景前段时间接手了一个边缘视觉识别的项目,大功能已经开发的差不多了,主要是需要是优化一些性能问题。其中比较突出的内存泄漏的问题,而且不止一处,有些比较有代表性,可以总结一下。为了更好地可视化内存...

python爬虫之多线程threading、多进程、协程aiohttp批量下载图片

一、单线程常规下载常规单线程执行脚本爬取壁纸图片,只爬取一页的图片。importdatetimeimportreimportrequestsfrombs4importBeautifu...

取消回复欢迎 发表评论: