Python控制台进度图神器(python控制台在哪)
off999 2024-09-14 07:16 35 浏览 0 评论
前言
有时候在使用Python处理比较耗时操作的时候,为了便于观察处理进度,这时候就需要通过进度条将处理情况进行可视化展示,以便我们能够及时了解情况。这对于第三方库非常丰富的Python来说,想要实现这一功能并不是什么难事。
tqdm就能非常完美的支持和解决这些问题,可以实时输出处理进度而且占用的CPU资源非常少,支持windows、Linux、mac等系统,支持循环处理、多进程、递归处理、还可以结合linux的命令来查看处理情况、结合pandas,等进度展示。
大家先看看tqdm的进度条效果
安装
github地址:https://github.com/tqdm/tqdm
想要安装tqdm也是非常简单的,通过pip或conda就可以安装,而且不需要安装其他的依赖库
pip安装
pip install tqdm
conda安装
conda install -c conda-forge tqdm
迭代对象处理
对于可以迭代的对象都可以使用下面这种方式,来实现可视化进度,非常方便
from tqdm import tqdm import time for i in tqdm(range(100)): time.sleep(0.1) pass
在使用tqdm的时候,可以将tqdm(range(100))替换为trange(100)代码如下
from tqdm import tqdm,trange import time for i in trange(100): time.sleep(0.1) pass
观察处理的数据
通过tqdm提供的set_description方法可以实时查看每次处理的数据
from tqdm import tqdm import time pbar = tqdm(["a","b","c","d"]) for c in pbar: time.sleep(1) pbar.set_description("Processing %s"%c)
手动设置处理的进度
通过update方法可以控制每次进度条更新的进度
from tqdm import tqdm import time #total参数设置进度条的总长度 with tqdm(total=100) as pbar: for i in range(100): time.sleep(0.05) #每次更新进度条的长度 pbar.update(1)
除了使用with之外,还可以使用另外一种方法实现上面的效果
from tqdm import tqdm import time #total参数设置进度条的总长度 pbar = tqdm(total=100) for i in range(100): time.sleep(0.05) #每次更新进度条的长度 pbar.update(1) #关闭占用的资源 pbar.close()
linux命令展示进度条
不使用tqdm
$ time find . -name '*.py' -type f -exec cat \{} \; | wc -l 857365 real 0m3.458s user 0m0.274s sys 0m3.325s
使用tqdm
$ time find . -name '*.py' -type f -exec cat \{} \; | tqdm | wc -l 857366it [00:03, 246471.31it/s] 857365 real 0m3.585s user 0m0.862s sys 0m3.358s
指定tqdm的参数控制进度条
$ find . -name '*.py' -type f -exec cat \{} \; | tqdm --unit loc --unit_scale --total 857366 >> /dev/null 100%|███████████████████████████████████| 857K/857K [00:04<00:00, 246Kloc/s] $ 7z a -bd -r backup.7z docs/ | grep Compressing | tqdm --total $(find docs/ -type f | wc -l) --unit files >> backup.log 100%|███████████████████████████████▉| 8014/8014 [01:37<00:00, 82.29files/s]
自定义进度条显示信息
通过set_description和set_postfix方法设置进度条显示信息
from tqdm import trange from random import random,randint import time with trange(100) as t: for i in t: #设置进度条左边显示的信息 t.set_description("GEN %i"%i) #设置进度条右边显示的信息 t.set_postfix(loss=random(),gen=randint(1,999),str="h",lst=[1,2]) time.sleep(0.1)
from tqdm import tqdm import time with tqdm(total=10,bar_format="{postfix[0]}{postfix[1][value]:>9.3g}", postfix=["Batch",dict(value=0)]) as t: for i in range(10): time.sleep(0.05) t.postfix[1]["value"] = i / 2 t.update()
多层循环进度条
通过tqdm也可以很简单的实现嵌套循环进度条的展示
from tqdm import tqdm import time for i in tqdm(range(20), ascii=True,desc="1st loop"): for j in tqdm(range(10), ascii=True,desc="2nd loop"): time.sleep(0.01)
在pycharm中执行以上代码的时候,会出现进度条位置错乱,目前官方并没有给出好的解决方案,这是由于pycharm不支持某些字符导致的,不过可以将上面的代码保存为脚本然后在命令行中执行,效果如下
多进程进度条
在使用多进程处理任务的时候,通过tqdm可以实时查看每一个进程任务的处理情况
from time import sleep from tqdm import trange, tqdm from multiprocessing import Pool, freeze_support, RLock L = list(range(9)) def progresser(n): interval = 0.001 / (n + 2) total = 5000 text = "#{}, est. {:<04.2}s".format(n, interval * total) for i in trange(total, desc=text, position=n,ascii=True): sleep(interval) if __name__ == '__main__': freeze_support() # for Windows support p = Pool(len(L), # again, for Windows support initializer=tqdm.set_lock, initargs=(RLock(),)) p.map(progresser, L) print("\n" * (len(L) - 2))
pandas中使用tqdm
import pandas as pd import numpy as np from tqdm import tqdm df = pd.DataFrame(np.random.randint(0, 100, (100000, 6))) tqdm.pandas(desc="my bar!") df.progress_apply(lambda x: x**2)
递归使用进度条
下面的代码是实现递归遍历文件夹
from tqdm import tqdm import os.path def find_files_recursively(path, show_progress=True): files = [] # total=1 assumes `path` is a file t = tqdm(total=1, unit="file", disable=not show_progress) if not os.path.exists(path): raise IOError("Cannot find:" + path) def append_found_file(f): files.append(f) t.update() def list_found_dir(path): """returns os.listdir(path) assuming os.path.isdir(path)""" try: listing = os.listdir(path) except: return [] # subtract 1 since a "file" we found was actually this directory t.total += len(listing) - 1 # fancy way to give info without forcing a refresh t.set_postfix(dir=path[-10:], refresh=False) t.update(0) # may trigger a refresh return listing def recursively_search(path): if os.path.isdir(path): for f in list_found_dir(path): recursively_search(os.path.join(path, f)) else: append_found_file(path) recursively_search(path) t.set_postfix(dir=path) t.close() return files find_files_recursively("E:/")
注意
在使用tqdm显示进度条的时候,如果代码中存在print可能会导致输出多行进度条,此时可以将print语句改为tqdm.write,代码如下
for i in tqdm(range(10),ascii=True): tqdm.write("come on") time.sleep(0.1)
相关推荐
- python列表(List)必会的13个核心技巧(附实用方法)
-
列表(List)是Python入门的关键步骤,因为它是编程中最常用的数据结构之一。以下是高效掌握列表的核心技巧和实用方法:一、理解列表的本质可变有序集合:可随时修改内容,保持元素顺序混合类型:一个列表...
- Python列表(List)一文全掌握:核心知识点+20实战练习题
-
Python列表(List)知识点教程一、列表的定义与特性定义:列表是可变的有序集合,用方括号[]定义,元素用逗号分隔。list1=[1,"apple",3.14]lis...
- python编程中列表常见的9大问题,你知道吗?
-
Python列表常见错误及解决方案列表(list)是Python中最常用的数据结构之一,但在使用过程中经常会遇到各种问题。以下是Python列表使用中的常见错误及其解决方法:一、索引越界错误1.访问...
- python之列表操作(python列表操作函数大全)
-
常用函数函数名功能说明append将一个元素添加到列表中names=['tom']用法:names.append('tommy')注意事项:被添加的元素只会被添加到...
- 7 种在 Python 中反转列表的智能方法
-
1.使用reverse()方法(原地)my_list=[10,12,6,34,23]my_list.reverse()print(my_list)#output:[23,34,6,12,...
- Python教程-列表复制(python中列表copy的用法)
-
作为软件开发者,我们总是努力编写干净、简洁、高效的代码。Python列表是一种多功能的数据结构,它允许你存储一个项目的集合。在Python中,列表是可变的,这意味着你可以在创建一个列表后改变它的...
- 「Python程序设计」基本数据类型:列表(数组)
-
列表是python程序设计中的一个基本的,也是重要的数据结构。我们可以把列表数据结构,理解为其它编程语言中的数组。定义和创建列表列表中的数据元素的索引,和数组基本一致,第一个元素的索引,或者是下标为0...
- Python中获取列表最后一个元素的方法
-
技术背景在Python编程中,经常会遇到需要获取列表最后一个元素的场景。Python提供了多种方法来实现这一需求,不同的方法适用于不同的场景。实现步骤1.使用负索引-1这是最简单和最Pythoni...
- Python学不会来打我(11)列表list详解:用法、场景与类型转换
-
在Python编程中,列表(list)是最常用且功能最强大的数据结构之一。它是一个有序、可变、支持重复元素的集合,可以存储任意类型的对象,包括整数、字符串、布尔值、甚至其他列表。本文将从基础语法开始...
- 零起点Python机器学习快速入门-4-4-列表操作
-
Python列表的基本操作展开。首先,定义了两个列表zlst和vlst并将它们的内容打印出来。接着,使用切片操作从这两个列表中提取部分元素,分别得到s2、s3和s4三个新的列表,并打...
- python入门 到脱坑 基本数据类型—列表
-
以下是Python列表(List)的入门详解,包含基础操作、常用方法和实用技巧,适合初学者系统掌握:一、列表基础1.定义列表#空列表empty_list=[]#包含不同类型元素的列表...
- Python 列表(List)完全指南:数据操作的利器
-
在Python中,列表(list)是一种可变序列(mutablesequence),它允许我们存储和操作一组有序数据(ordereddata)。本教程将从基础定义(basicdefiniti...
- 如何快速掌握 Python中列表的使用
-
学习python知识,好掌握Python列表的使用。从概念上来讲,Python中的列表list是一种有序、可变的容器,可以存储任意类型的数据(包括其他列表)。以下是列表的常用的操作和知识:1....
- Python中的列表详解及示例(python中列表的用法)
-
艾瑞巴蒂干货来了,数据列表,骚话没有直接来吧列表(List)是Python中最基本、最常用的数据结构之一,它是一个有序的可变集合,可以包含任意类型的元素。列表的基本特性有序集合:元素按插入顺序存储可变...
- python数据类型之列表、字典、元组、集合及操作
-
Python数据类型进阶:列表、字典与集合在Python中,数据类型是编程的基础,熟练掌握常用数据结构是成为高级开发者的关键。上一篇文章我们学习到了Python的数据类型:字符串(string)、数...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python自定义函数 (53)
- python进度条 (67)
- python吧 (67)
- python字典遍历 (54)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python串口编程 (60)
- python读取文件夹下所有文件 (59)
- java调用python脚本 (56)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python人脸识别 (54)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)