百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

今天就给大家介绍一下Python3如何连接到Mysql数据库

off999 2024-10-12 06:16 25 浏览 0 评论

了解到不少关注我的朋友是做数据分析的,而Python算是目前比较热的数据分析工具,今天就给大家介绍一下Python3如何连接到Mysql数据库。

Python3连接Mysql用到的是PyMySQL。

什么是 PyMySQL?

PyMySQL 是在 Python3.x 版本中用于连接 MySQL 服务器的一个库,Python2中则使用mysqldb。

PyMySQL 遵循 Python 数据库 API v2.0 规范,并包含了 pure-Python MySQL 客户端库。

PyMySQL 安装

在使用 PyMySQL 之前,我们需要确保 PyMySQL 已安装。

PyMySQL 下载地址:https://github.com/PyMySQL/PyMySQL。

如果还未安装,我们可以使用以下命令安装最新版的 PyMySQL:

$ pip install PyMySQL

如果你的系统不支持 pip 命令,可以使用以下方式安装:

1、使用 git 命令下载安装包安装(你也可以手动下载):

$ git clone https://github.com/PyMySQL/PyMySQL$ cd PyMySQL/$ python3 setup.py install

(提示:可以左右滑动代码)

2、如果需要制定版本号,可以使用 curl 命令来安装:

$ # X.X 为 PyMySQL 的版本号
$ curl -L https://github.com/PyMySQL/PyMySQL/tarball/pymysql-X.X | tar xz
$ cd PyMySQL*$ python3 setup.py install
$ # 现在你可以删除 PyMySQL* 目录

注意:请确保您有root权限来安装上述模块。

安装的过程中可能会出现"ImportError: No module named setuptools"的错误提示,意思是你没有安装setuptools,你可以访问https://pypi.python.org/pypi/setuptools 找到各个系统的安装方法。

Linux 系统安装实例:

$ wget https://bootstrap.pypa.io/ez_setup.py$ python3 ez_setup.py

数据库连接

连接数据库前,请先确认以下事项:

  • 你已经创建了数据库 TESTDB.
  • 在TESTDB数据库中您已经创建了表 EMPLOYEE
  • EMPLOYEE表字段为 FIRST_NAME, LAST_NAME, AGE, SEX 和 INCOME。
  • 连接数据库TESTDB使用的用户名为 "testuser" ,密码为 "test123",你可以可以自己设定或者直接使用root用户名及其密码,Mysql数据库用户授权请使用Grant命令。
  • 在你的机子上已经安装了 Python MySQLdb 模块。
  • 如果您对sql语句不熟悉,可以访问我们的 SQL基础教程

实例:

以下实例链接 Mysql 的 TESTDB 数据库:

#!/usr/bin/python3
import pymysql
# 打开数据库连接
db = pymysql.connect("localhost","testuser","test123","TESTDB" )
# 使用 cursor() 方法创建一个游标对象 cursor
cursor = db.cursor()
# 使用 execute() 方法执行 SQL 查询 
cursor.execute("SELECT VERSION()")
# 使用 fetchone() 方法获取单条数据.
data = cursor.fetchone() 
print ("Database version : %s " % data)
# 关闭数据库连接
db.close()

执行以上脚本输出结果如下:

Database version : 5.6.40

创建数据库

如果数据库连接存在我们可以使用execute()方法来为数据库创建表,如下所示创建表EMPLOYEE:

#!/usr/bin/python3 
import pymysql 
# 打开数据库连接
db = pymysql.connect("localhost","testuser","test123","TESTDB" ) 
# 使用 cursor() 方法创建一个游标对象 cursor
cursor = db.cursor() 
# 使用 execute() 方法执行 SQL,如果表存在则删除
cursor.execute("DROP TABLE IF EXISTS EMPLOYEE") 
# 使用预处理语句创建表
sql = """CREATE TABLE EMPLOYEE (
 FIRST_NAME CHAR(20) NOT NULL,
 LAST_NAME CHAR(20),
 AGE INT, 
 SEX CHAR(1),
 INCOME FLOAT )"""
cursor.execute(sql) 
# 关闭数据库连接
db.close()

数据库插入操作

以下实例使用执行 SQL INSERT 语句向表 EMPLOYEE 插入记录:

#!/usr/bin/python3
import pymysql
# 打开数据库连接
db = pymysql.connect("localhost","testuser","test123","TESTDB" )
# 使用cursor()方法获取操作游标 
cursor = db.cursor() 
# SQL 插入语句
sql = """INSERT INTO EMPLOYEE(FIRST_NAME,
 LAST_NAME, AGE, SEX, INCOME)
 VALUES ('Mac', 'Mohan', 20, 'M', 2000)"""
try:
 # 执行sql语句
 cursor.execute(sql)
 # 提交到数据库执行
 db.commit()
except:
 # 如果发生错误则回滚
 db.rollback() 
# 关闭数据库连接
db.close()

以上例子也可以写成如下形式:

#!/usr/bin/python3
import pymysql
# 打开数据库连接
db = pymysql.connect("localhost","testuser","test123","TESTDB" )
# 使用cursor()方法获取操作游标 
cursor = db.cursor()
# SQL 插入语句
sql = "INSERT INTO EMPLOYEE(FIRST_NAME, \
 LAST_NAME, AGE, SEX, INCOME) \
 VALUES ('%s', '%s', '%d', '%c', '%d' )" % \
 ('Mac', 'Mohan', 20, 'M', 2000)
try:
 # 执行sql语句
 cursor.execute(sql)
 # 执行sql语句
 db.commit()
except:
 # 发生错误时回滚
 db.rollback() 
# 关闭数据库连接
db.close()

以下代码使用变量向SQL语句中传递参数:

user_id = "test123"
password = "password"
con.execute('insert into Login values("%s", "%s")' % \
 (user_id, password))

数据库查询操作

Python查询Mysql使用 fetchone() 方法获取单条数据, 使用fetchall() 方法获取多条数据。

  • fetchone(): 该方法获取下一个查询结果集。结果集是一个对象
  • fetchall(): 接收全部的返回结果行.
  • rowcount: 这是一个只读属性,并返回执行execute()方法后影响的行数。

实例:

查询EMPLOYEE表中salary(工资)字段大于1000的所有数据:

#!/usr/bin/python3
import pymysql
# 打开数据库连接
db = pymysql.connect("localhost","testuser","test123","TESTDB" )
# 使用cursor()方法获取操作游标 
cursor = db.cursor()
# SQL 查询语句
sql = "SELECT * FROM EMPLOYEE \
 WHERE INCOME > '%d'" % (1000)
try:
 # 执行SQL语句
 cursor.execute(sql)
 # 获取所有记录列表
 results = cursor.fetchall()
 for row in results:
 fname = row[0]
 lname = row[1]
 age = row[2]
 sex = row[3]
 income = row[4]
 # 打印结果
 print ("fname=%s,lname=%s,age=%d,sex=%s,income=%d" % \
 (fname, lname, age, sex, income ))
except:
 print ("Error: unable to fetch data")
# 关闭数据库连接
db.close()

以上脚本执行结果如下:

fname=Mac, lname=Mohan, age=20, sex=M, income=2000

数据库更新操作

更新操作用于更新数据表的的数据,以下实例将 TESTDB 表中 SEX 为 'M' 的 AGE 字段递增 1:

#!/usr/bin/python3
import pymysql
# 打开数据库连接
db = pymysql.connect("localhost","testuser","test123","TESTDB" )
# 使用cursor()方法获取操作游标 
cursor = db.cursor() 
# SQL 更新语句
sql = "UPDATE EMPLOYEE SET AGE = AGE + 1 WHERE SEX = '%c'" % ('M')
try:
 # 执行SQL语句
 cursor.execute(sql)
 # 提交到数据库执行
 db.commit()
except:
 # 发生错误时回滚
 db.rollback() 
# 关闭数据库连接
db.close()

删除操作

删除操作用于删除数据表中的数据,以下实例演示了删除数据表 EMPLOYEE 中 AGE 大于 20 的所有数据:

#!/usr/bin/python3 
import pymysql 
# 打开数据库连接
db = pymysql.connect("localhost","testuser","test123","TESTDB" ) 
# 使用cursor()方法获取操作游标 
cursor = db.cursor() 
# SQL 删除语句
sql = "DELETE FROM EMPLOYEE WHERE AGE > '%d'" % (20)
try:
 # 执行SQL语句
 cursor.execute(sql)
 # 提交修改
 db.commit()
except:
 # 发生错误时回滚
 db.rollback()
# 关闭连接
db.close()

执行事务

事务机制可以确保数据一致性。

事务应该具有4个属性:原子性、一致性、隔离性、持久性。这四个属性通常称为ACID特性。

  • 原子性(atomicity)。一个事务是一个不可分割的工作单位,事务中包括的诸操作要么都做,要么都不做。
  • 一致性(consistency)。事务必须是使数据库从一个一致性状态变到另一个一致性状态。一致性与原子性是密切相关的。
  • 隔离性(isolation)。一个事务的执行不能被其他事务干扰。即一个事务内部的操作及使用的数据对并发的其他事务是隔离的,并发执行的各个事务之间不能互相干扰。
  • 持久性(durability)。持续性也称永久性(permanence),指一个事务一旦提交,它对数据库中数据的改变就应该是永久性的。接下来的其他操作或故障不应该对其有任何影响。

Python DB API 2.0 的事务提供了两个方法 commit 或 rollback。

实例

# SQL删除记录语句
sql = "DELETE FROM EMPLOYEE WHERE AGE > '%d'" % (20)
try:
 # 执行SQL语句
 cursor.execute(sql)
 # 向数据库提交
 db.commit()
except:
 # 发生错误时回滚
 db.rollback()

对于支持事务的数据库, 在Python数据库编程中,当游标建立之时,就自动开始了一个隐形的数据库事务。

commit()方法游标的所有更新操作,rollback()方法回滚当前游标的所有操作。每一个方法都开始了一个新的事务。

以上就是python3操作Mysql数据库的一些简单操作,希望对做数据分析的朋友有帮助。

相关推荐

Python 数据分析——利用Pandas进行分组统计

话说天下大势,分久必合,合久必分。数据分析也是如此,我们经常要对数据进行分组与聚合,以对不同组的数据进行深入解读。本章将介绍如何利用Pandas中的GroupBy操作函数来完成数据的分组、聚合以及统计...

python数据分析:介绍pandas库的数据类型Series和DataFrame

安装pandaspipinstallpandas-ihttps://mirrors.aliyun.com/pypi/simple/使用pandas直接导入即可importpandasas...

使用DataFrame计算两列的总和和最大值_[python]

【如果对您有用,请关注并转发,谢谢~~】最近在处理气象类相关数据的空间计算,在做综合性计算的时候,DataFrame针对每列的统计求和、最大值等较为方便,对某行的两列或多列数据进行求和与最大值等的简便...

8-Python内置函数

Python提供了丰富的内置函数,这些函数可以直接使用而无需导入任何模块。以下是一些常用的内置函数及其示例:1-print()1-1-说明输出指定的信息到控制台。1-2-例子2-len()2-1-说...

Python中函数式编程函数: reduce()函数

Python中的reduce()函数是一个强大的工具,它通过连续地将指定的函数应用于序列(如列表)来对序列(如列表)执行累积操作。它是functools模块的一部分,这意味着您需要在使用它之...

万万没想到,除了香农计划,Python3.11竟还有这么多性能提升

众所周知,Python3.11版本带来了较大的性能提升,但是,它具体在哪些方面上得到了优化呢?除了著名的“香农计划”外,它还包含哪些与性能相关的优化呢?本文将带你一探究竟!作者:BeshrKay...

最全python3.11版12类75个内置函数大全

获取全部内置函数:importbuiltins#导入模块yc=[]#异常属性nc=[]#不可调用fn=[]#内置函数defll(ty=builtins):...

软件测试笔试题

测试工程师岗位,3-5年,10-14k1.我司有一款产品,类似TeamViewer,向日葵,mstsc,QQ远程控制产品,一个PC客户端产品,请设想一下测试要点。并写出2.写出常用的SQL语句8条,l...

备战各大互联网巨头公司招聘会,最全Python面试大全,共300题

前言众所周知,越是顶尖的互联网公司在面试这一part的要求就越高,需要你有很好的技术功底、项目经验、一份漂亮的简历,当然还有避免不了的笔试过关。对于Python的工程师来说,全面掌握好有关Python...

经典 SQL 数据库笔试题及答案整理

马上又是金三银四啦,有蛮多小伙伴在跳槽找工作,但对于年限稍短的软件测试工程师,难免会需要进行笔试,而在笔试中,基本都会碰到一道关于数据库的大题,今天这篇文章呢,就收录了下最近学员反馈上来的一些数据库笔...

用Python开发日常小软件,让生活与工作更高效!附实例代码

引言:Python如何让生活更轻松?在数字化时代,编程早已不是程序员的专属技能。Python凭借其简洁易学的特点,成为普通人提升效率、解决日常问题的得力工具。无论是自动化重复任务、处理数据,还是开发个...

太牛了!102个Python实战项目被我扒到了!建议收藏!

挖到宝了!整整102个Python实战项目合集,从基础语法到高阶应用全覆盖,附完整源码+数据集,手把手带你从代码小白变身实战大神!这波羊毛不薅真的亏到哭!超全项目库,学练一站式搞定这份资...

Python中的并发编程

1.Python对并发编程的支持多线程:threading,利用CPU和IO可以同时执行的原理,让CPU不会干巴巴等待IO完成。多进程:multiprocessing,利用多核CPU...

Python 也有内存泄漏?

1.背景前段时间接手了一个边缘视觉识别的项目,大功能已经开发的差不多了,主要是需要是优化一些性能问题。其中比较突出的内存泄漏的问题,而且不止一处,有些比较有代表性,可以总结一下。为了更好地可视化内存...

python爬虫之多线程threading、多进程、协程aiohttp批量下载图片

一、单线程常规下载常规单线程执行脚本爬取壁纸图片,只爬取一页的图片。importdatetimeimportreimportrequestsfrombs4importBeautifu...

取消回复欢迎 发表评论: