百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术资源 > 正文

Python编程 - 基于OpenCV实现人脸识别(实践篇)爬虫+人脸识别

off999 2024-10-20 08:09 18 浏览 0 评论

一.案例概述

本案例需要一定的Python编程基础并掌握OpenCV基本使用。
时间仓促:初略编写文档

效果如下:

开发环境:

操作系统:Windows 10

开发工具:PyCharm 2019.2版本

python版本:3.6.7

计算机视频库包:opencv_contrib_python-4.1.0.25-cp36-cp36m-win_amd64.whl

算法支持包:numpy(安装opencv默认安装numpy)

下载地址:

Python3.6.7:

Download Python?www.python.org

Pycharm工具:

Download PyCharm: Python IDE for Professional Developers by JetBrains?www.jetbrains.com

第三方包下载:

opencv-contrib-python?pypi.org

二.编写案例准备资源:

准备工作:

 1.开发环境、开发工具及第三方包准备完善并创建空项目。
 2.准备一些个人的图片(或者通过代码保存个人面部存入本地)要求:图片名称有一定规律
 3.爬虫文件 - 爬取明星照片并存储本地
 4.将明星图片和个人图片通过opencv处理保存面部图片
 5.开始编写人脸识别的代码

三.代码编写顺序

一.爬虫代码直接下载运行:点击下载链接: https://pan.baidu.com/s/1BNzSQ2Xk9GkYslhwKXLYSQ 提取码: qmy1二.安装python爬虫需要的第三方包

  • requests(用户网络访问)
  • beautifulsoup4(用户数据结构解析)
  • pypinyin(用于中文转换为拼音)

三.运行python爬虫代码

四.将图片转换为面部图片进行存储

# 获取小头像信息
import cv2
import os
# 图片张数变量
def read_image():
    dirs = os.listdir("d_img")
    for j,dir in enumerate(dirs):
        print(dir)
        # 判断是否有存储头像的路径
        file_path = "x_face/%s"%str(dir);
        if not os.path.exists(file_path):
            os.makedirs(file_path);
            pass
        num = 0;
        for i in range(0,20):
            image = cv2.imread('d_img/%s/%d.jpg'%(dir,i))
            gray = cv2.cvtColor(image,code = cv2.COLOR_BGR2GRAY);
            # 数据参数
            face_detector = cv2.CascadeClassifier("haarcascade_frontalface_alt.xml");
            # [3]进行数据对比:minNeighbors = 每一个目标至少要被检测 -整数
            face_01 = face_detector.detectMultiScale(gray, minNeighbors=4);
            # 绘制矩形人脸检测
            print("第%d张图片===:"%i,face_01)
            print(type(face_01))
            if isinstance(face_01,tuple):
                print("没有检查的头像")
                pass
            else:
                print("****有检查的头像****")
                for x, y, w, h in face_01:
                    # time.sleep(10)
                    x_face = gray[y:y + h, x:x + w];
                    x_face = cv2.resize(x_face,dsize=(200,200));
                    bo_photo = cv2.imwrite("%s\%d.jpg" % (file_path, num), x_face);
                    print("保存成功:%d" % num)
                    pass
                num+=1;
                pass
            pass
    pass
if __name__ == '__main__':
    read_image();
    pass

运行结果 - 生产以下文件:



五.人脸识别 - 主代码

# 人脸识别 - 主代码
import cv2
import os
import time
import numpy as np;
# 图片张数变量
def Get_x_faces():
    dirs = os.listdir("x_face")
    print(dirs)
    X = []# 
    Y = []# 
    for j,dir in enumerate(dirs):
        for i in range(0,9):
            image = cv2.imread('x_face/%s/%d.jpg'%(dir,i))
            gray = cv2.cvtColor(image,code = cv2.COLOR_BGR2GRAY);
            print("读取",gray.shape)
            # NoneType  ndarray
            if len(str(image))!=0:
                print("加入。。。。")
                X.append(gray)
                Y.append(j)
                pass
    return [X,Y,dirs]
    pass

if __name__ == '__main__':
    X,Y,dirs = Get_x_faces();
    print("X=",X)
    print("Y=",Y)
    print("dirs=",dirs)
    #asarray都可以将结构数据转化为ndarray
    X = np.asarray(X);
    Y = np.asarray(Y);
    # 产生一个随机数 -
    index = [i for i in range(0,len(X))];
    print(index)
    #现场修改序列,改变自身内容。(类似洗牌,打乱顺序)
    np.random.shuffle(index);
    print("***********",index)
    # 打乱顺序 :相同规则打乱
    X = X[index]
    Y = Y[index]
    print("88888888",Y)
    # 训练数据
    print("训练数据为:",len(X),len(Y))
    X_train = X[:len(X)]
    Y_train = Y[:len(Y)];
    print("800000",Y_train)
    # 算法Eigen 特征的意思
    # 主成分分析(PCA)——Eigenfaces(特征脸)——函数:cv2.face.EigenFaceRecognizer_create
    model = cv2.face.EigenFaceRecognizer_create();
    print(model)
    # 算法学习
    print("算法学习", len(X_train), len(Y_train));
    model.train(X, Y);
    print("已经学会了数据。。。。")
	# 测试数据
    # X_test, Y_test = X[-5:], Y[-5:];
    # 开始验证
    # for data in X_test:
    #     # print(data)
    #     result = model.predict(data);
    #     print("=================")
    #     print(result)
    #     print(dirs[result[0]])
    #     pass

    Video_face = cv2.VideoCapture(0);
    face_detector = cv2.CascadeClassifier("haarcascade_frontalface_alt.xml")
    # while循环调取视频图形
    while True:
        flag,frame = Video_face.read();
        gray = cv2.cvtColor(frame,code=cv2.COLOR_BGR2GRAY);
        faces = face_detector.detectMultiScale(gray,1.3,5);

        if isinstance(faces, tuple):
            print("没有检查的头像")
            pass
        else:
            print("有头像了。。。。")
            # for循环遍历数据
            for x, y, w, h in faces:
                cv2.rectangle(frame, pt1=(x, y), pt2=(x + w, y + h), color=[0, 0, 255], thickness=2);
                face = gray[y:y + h, x:x+w];
                print("===]]]", face.shape)
                face_1 = cv2.resize(face, dsize=(200, 200));
                print("=================")
                print(face_1.shape)
                # 开始对比
                print("~~~~"*20)
                print(" 参数为:",face_1.shape);
                result = model.predict(face_1);
                print("对比返回结果:", result)
                print('该人脸是:', dirs[result[0]])
                a1 = dirs[result[0]]
                if result[1]<1600:
                    a1 = "NO"
                    pass
                cv2.putText(frame, a1, (x, y), cv2.FONT_ITALIC, 1, [0, 0, 255], 2);
                pass
            pass
        cv2.imshow('face', frame)
        cv2.waitKey(100)
        pass
    video.release()
    cv2.destroyAllWindows();
    pass

大功告成

相关推荐

Python 数据分析——利用Pandas进行分组统计

话说天下大势,分久必合,合久必分。数据分析也是如此,我们经常要对数据进行分组与聚合,以对不同组的数据进行深入解读。本章将介绍如何利用Pandas中的GroupBy操作函数来完成数据的分组、聚合以及统计...

python数据分析:介绍pandas库的数据类型Series和DataFrame

安装pandaspipinstallpandas-ihttps://mirrors.aliyun.com/pypi/simple/使用pandas直接导入即可importpandasas...

使用DataFrame计算两列的总和和最大值_[python]

【如果对您有用,请关注并转发,谢谢~~】最近在处理气象类相关数据的空间计算,在做综合性计算的时候,DataFrame针对每列的统计求和、最大值等较为方便,对某行的两列或多列数据进行求和与最大值等的简便...

8-Python内置函数

Python提供了丰富的内置函数,这些函数可以直接使用而无需导入任何模块。以下是一些常用的内置函数及其示例:1-print()1-1-说明输出指定的信息到控制台。1-2-例子2-len()2-1-说...

Python中函数式编程函数: reduce()函数

Python中的reduce()函数是一个强大的工具,它通过连续地将指定的函数应用于序列(如列表)来对序列(如列表)执行累积操作。它是functools模块的一部分,这意味着您需要在使用它之...

万万没想到,除了香农计划,Python3.11竟还有这么多性能提升

众所周知,Python3.11版本带来了较大的性能提升,但是,它具体在哪些方面上得到了优化呢?除了著名的“香农计划”外,它还包含哪些与性能相关的优化呢?本文将带你一探究竟!作者:BeshrKay...

最全python3.11版12类75个内置函数大全

获取全部内置函数:importbuiltins#导入模块yc=[]#异常属性nc=[]#不可调用fn=[]#内置函数defll(ty=builtins):...

软件测试笔试题

测试工程师岗位,3-5年,10-14k1.我司有一款产品,类似TeamViewer,向日葵,mstsc,QQ远程控制产品,一个PC客户端产品,请设想一下测试要点。并写出2.写出常用的SQL语句8条,l...

备战各大互联网巨头公司招聘会,最全Python面试大全,共300题

前言众所周知,越是顶尖的互联网公司在面试这一part的要求就越高,需要你有很好的技术功底、项目经验、一份漂亮的简历,当然还有避免不了的笔试过关。对于Python的工程师来说,全面掌握好有关Python...

经典 SQL 数据库笔试题及答案整理

马上又是金三银四啦,有蛮多小伙伴在跳槽找工作,但对于年限稍短的软件测试工程师,难免会需要进行笔试,而在笔试中,基本都会碰到一道关于数据库的大题,今天这篇文章呢,就收录了下最近学员反馈上来的一些数据库笔...

用Python开发日常小软件,让生活与工作更高效!附实例代码

引言:Python如何让生活更轻松?在数字化时代,编程早已不是程序员的专属技能。Python凭借其简洁易学的特点,成为普通人提升效率、解决日常问题的得力工具。无论是自动化重复任务、处理数据,还是开发个...

太牛了!102个Python实战项目被我扒到了!建议收藏!

挖到宝了!整整102个Python实战项目合集,从基础语法到高阶应用全覆盖,附完整源码+数据集,手把手带你从代码小白变身实战大神!这波羊毛不薅真的亏到哭!超全项目库,学练一站式搞定这份资...

Python中的并发编程

1.Python对并发编程的支持多线程:threading,利用CPU和IO可以同时执行的原理,让CPU不会干巴巴等待IO完成。多进程:multiprocessing,利用多核CPU...

Python 也有内存泄漏?

1.背景前段时间接手了一个边缘视觉识别的项目,大功能已经开发的差不多了,主要是需要是优化一些性能问题。其中比较突出的内存泄漏的问题,而且不止一处,有些比较有代表性,可以总结一下。为了更好地可视化内存...

python爬虫之多线程threading、多进程、协程aiohttp批量下载图片

一、单线程常规下载常规单线程执行脚本爬取壁纸图片,只爬取一页的图片。importdatetimeimportreimportrequestsfrombs4importBeautifu...

取消回复欢迎 发表评论: