[深度学习] Python人脸识别库Deepface使用教程
off999 2024-10-20 08:09 30 浏览 0 评论
deepface是一个Python轻量级人脸识别和人脸属性分析(年龄、性别、情感和种族)框架,提供非常简单的接口就可以实现各种人脸识别算法的应用。deepface官方仓库为?deepface???。deepface提供了多种模型,模型下载地址为??deepface_models??。
安装方式: pip install deepface -i https://pypi.tuna.tsinghua.edu.cn/simple
deepface主要提供以下人脸识别算法,具体对应接口为:
- DeepFace.verify:人脸验证
- DeepFace.find:人脸识别
- DeepFace.analyze:人脸属性分析
- DeepFace.detectFace:人脸检测
- DeepFace.represent:人脸特征提取
- DeepFace.stream:人脸实时分析
总体而言,这个项目的人脸识别模型识别效果还行,但是离工程应用还是有一定的距离,不过还是非常推荐学习该库内部代码。
某些网站会判定本文人脸图片违规,这是网站识别算法自身问题。
本文所有算法展示效果和代码见:
github: ??Python-Study-Notes??
此外可以看一看另外一个人脸识别库,功能更加齐全:[深度学习] Python人脸识别库face_recognition使用教程
文章目录
- 0 数据准备
- 1 人脸验证DeepFace.verify
- 2 人脸识别DeepFace.find
- 3 人脸属性分析DeepFace.analyze
- 4 人脸检测DeepFace.detectFace
- 5 人脸特征提取DeepFace.represent
- 6 参考
0 数据准备
# deep库的导入就一行代码
from deepface import DeepFace
import matplotlib.pyplot as plt
from PIL import Image, ImageDraw
import os
import cv2
import numpy as np
所使用的数据集为网络明星图片,共五个明星,每个明星三张人脸,数据集的路径如下:
root
├── images
│ ├── baijingting
│ │ ├── 0000.jpg
│ │ ├── 0001.jpg
│ ├── jiangwei
│ │ ├── 0000.jpg
│
├── code
数据展示结果如下:
# --- 展示图片
def show_img(imgs: list, img_names: list) -> None:
imgs_count = len(imgs)
for i in range(imgs_count):
ax = plt.subplot(1, imgs_count, i+1)
ax.imshow(imgs[i])
ax.set_title(img_names[i])
ax.set_xticks([])
ax.set_yticks([])
plt.tight_layout(h_pad=3)
plt.show()
img_path = "images"
for person_dir in os.listdir(img_path):
imgs = []
img_names = []
for file in os.listdir(os.path.join(img_path, person_dir)):
imgs.append(Image.open(os.path.join(img_path, person_dir, file)))
img_names.append(person_dir + '/' + file)
show_img(imgs, img_names)
)
)
1 人脸验证DeepFace.verify
此函数用于验证图像对是同一个人还是不同的人。函数接口为:
verify(img1_path, img2_path = '', model_name = 'VGG-Face', distance_metric = 'cosine', model = None, enforce_detection = True, detector_backend = 'opencv', align = True, prog_bar = True, normalization = 'base')
输入参数介绍:
img1_path:传递的图像路径、numpy数组(BGR)或based64编码图像
model_name:模型名,支持VGG-Face, Facenet, OpenFace, DeepFace, DeepID, Dlib, ArcFace,Ensemble等
distance_metric:度量标准,支持cosine, euclidean, euclidean_l2
model:构建deepface模型。每次调用verify函数都会重新建立人脸识别模型。可以选择传递预构建的人脸识别模型。如DeepFace.build_model('VGG-Face')构建模型
enforce_detection:如果在图像中检测不到任何人脸,则验证函数将返回异常。将此设置为False将不会出现此异常
detector_backend:人脸识别算法后端,支持retinaface, mtcnn, opencv, ssd,dlib
align:是否人脸对齐
prog_bar:启用或禁用进度条
normalization:人脸归一化的方式
输出结果介绍:
如果img1_path是输入一张人脸就是返回一个字典,如果输入列表则返回一个字典列表。具体参数如下:
verified:是否同一个人
distance:人脸距离,越小越相似
max_threshold_to_verify:判断为同一个人的阈值
model: 所用模型
similarity_metric: 相似性度量标准
各识别模型的精度如下,LFW和YTF都是小型数据集。Human-beings表示人类识别精度。
Model | LFW Score | YTF Score |
Facenet512 | 99.65% | - |
SFace | 99.60% | - |
ArcFace | 99.41% | - |
Dlib | 99.38 % | - |
Facenet | 99.20% | - |
VGG-Face | 98.78% | 97.40% |
Human-beings | 97.53% | - |
OpenFace | 93.80% | - |
DeepID | - | 97.05% |
demo1
# 模型名
models_name = ["VGG-Face", "Facenet", "Facenet512", "OpenFace",
"DeepFace", "DeepID", "ArcFace", "Dlib", "SFace", 'Ensemble']
model_name = models_name[5]
result = DeepFace.verify(img1_path="images/baijingting/0001.jpg",
img2_path="images/pengyuyan/0001.jpg",
model_name=model_name)
# 展示结果,两个人不是同一个人
print(result)
1/1 [==============================] - 0s 170ms/step
1/1 [==============================] - 0s 20ms/step
{'verified': False, 'distance': 0.0751386867894902, 'threshold': 0.015, 'model': 'DeepID', 'detector_backend': 'opencv', 'similarity_metric': 'cosine'}
demo2
models_name = ["VGG-Face", "Facenet", "Facenet512", "OpenFace",
"DeepFace", "DeepID", "ArcFace", "Dlib", "SFace", 'Ensemble']
# 提前加载模型,避免重复加载
model_name = models_name[1]
# 创建模型
model = DeepFace.build_model(model_name)
# 列表中每一个子项表示用于对比的图像
img_paths = [["images/baijingting/0000.jpg", "images/baijingting/0001.jpg"],
["images/baijingting/0000.jpg", "images/zhaoliying/0001.jpg"]]
# 度量标准
metrics = ["cosine", "euclidean", "euclidean_l2"]
results = DeepFace.verify(img_paths,
model_name=model_name,
model=model,
distance_metric=metrics[2],
prog_bar=False)
# 展示结果
for result in results.items():
print(result)
1/1 [==============================] - 2s 2s/step
1/1 [==============================] - 0s 52ms/step
1/1 [==============================] - 0s 55ms/step
1/1 [==============================] - 0s 66ms/step
('pair_1', {'verified': True, 'distance': 0.6328494898310356, 'threshold': 0.8, 'model': 'Facenet', 'detector_backend': 'opencv', 'similarity_metric': 'euclidean_l2'})
('pair_2', {'verified': False, 'distance': 1.1700473293978308, 'threshold': 0.8, 'model': 'Facenet', 'detector_backend': 'opencv', 'similarity_metric': 'euclidean_l2'})
2 人脸识别DeepFace.find
此函数用于从数据集中检索当前人脸相似的图片。函数接口为:
find(img_path, db_path, model_name ='VGG-Face', distance_metric = 'cosine', model = None, enforce_detection = True, detector_backend = 'opencv', align = True, prog_bar = True, normalization = 'base', silent=False):
输入参数和verify差不多,主要多了人脸检索库路径地址:
db_path:检索库路径,
silent: 是否静默显示数据,
输出结果介绍:
一个包含相似图像的pandas dataframe数据体,包括图像路径和距离值,
models_name = ["VGG-Face", "Facenet", "Facenet512", "OpenFace",
"DeepFace", "DeepID", "ArcFace", "Dlib", "SFace", 'Ensemble']
# db_path是库文件地址
# 第一次会提取各个图像的特征,并保存到本地pkl文件以供下次直接调用
result = DeepFace.find(img_path="images/baijingting/0000.jpg",
db_path="images", model_name=models_name[1])
1/1 [==============================] - 0s 55ms/step
1/1 [==============================] - 0s 64ms/step
1/1 [==============================] - 0s 63ms/step
1/1 [==============================] - 0s 61ms/step
1/1 [==============================] - 0s 64ms/step
1/1 [==============================] - 0s 58ms/step
1/1 [==============================] - 0s 55ms/step
1/1 [==============================] - 0s 65ms/step
1/1 [==============================] - 0s 59ms/step
1/1 [==============================] - 0s 55ms/step
1/1 [==============================] - 0s 51ms/step
1/1 [==============================] - 0s 52ms/step
1/1 [==============================] - 0s 53ms/step
1/1 [==============================] - 0s 52ms/step
1/1 [==============================] - 0s 55ms/step
Representations stored in images / representations_facenet.pkl file. Please delete this file when you add new identities in your database.
1/1 [==============================] - 0s 56ms/step
find function lasts 3.254298448562622 seconds
# 展示结果,第一个是识别图像本身,后面两个是相似图片
print(result)
identity Facenet_cosine
0 images\baijingting/0000.jpg -2.220446e-16
1 images\baijingting/0001.jpg 2.002492e-01
2 images\baijingting/0002.jpg 2.328966e-01
3 人脸属性分析DeepFace.analyze
此函数用于分析当前人脸的面部属性,包括年龄,性别,面部表情(包括愤怒、恐惧、正常、悲伤、厌恶、快乐和惊讶),种族(包括亚洲人、白人、中东人、印度人、拉丁裔和黑人)。函数接口为:
analyze(img_path, actions = ('emotion', 'age', 'gender', 'race') , models = None, enforce_detection = True, detector_backend = 'opencv', prog_bar = True)
输入参数和verify差不多,主要多了属性设置actions:
actions:识别属性,包括age, gender, emotion, race
输出结果介绍:
如果img_path是输入一张人脸就是返回一个字典,如果输入列表则返回一个字典列表。具体参数如下:
region:人脸坐标,wywh格式
age:年龄
gender:性别
dominant_emotion: 主导情绪,也就是情绪识别结果
emotion:各个情绪度量值,值越大表示越倾向
dominant_race:种族结果
race:各个种族度量值
# 输入检测图像,这里只识别情绪,因为其他模型实在太大了,下载下来要很久。
result = DeepFace.analyze(img_path = "images/jiangwen/0000.jpg", actions = ['emotion'])
print(result)
1/1 [==============================] - 0s 113ms/step
{'emotion': {'angry': 2.147514166495057e-06, 'disgust': 3.124029827739067e-14, 'fear': 1.990160924947304e-06, 'happy': 99.9697208404541, 'sad': 1.9864262412738753e-05, 'surprise': 0.01537421194370836, 'neutral': 0.014887277211528271}, 'dominant_emotion': 'happy', 'region': {'x': 198, 'y': 34, 'w': 185, 'h': 185}}
数据可视化看看结果
im = Image.open( "images/jiangwen/0000.jpg")
# 坐标位置
x,y,w,h = result['region']['x'],result['region']['y'],result['region']['w'],result['region']['h']
draw = ImageDraw.Draw(im)
# 画框
draw.rectangle((x,y,x+w,y+h), outline="red", width=3)
print("表情:{}".format(result["dominant_emotion"]))
show_img([im],["jiangwen"])
表情:happy
4 人脸检测DeepFace.detectFace
此函数用于检测人脸,如果图像中有多个人脸只会返回一个,函数接口为:
detectFace(img_path, target_size = (224, 224), detector_backend = 'opencv', enforce_detection = True, align = True)
输入参数和verify差不多,主要多了可以设置返回图像的尺寸的参数target_size,输出返回一张RGB的numpy数组图像
result = DeepFace.detectFace(img_path = "images/zhangziyi/0000.jpg",align = True)
print(result.shape)
show_img([result],["zhangziyi"])
(224, 224, 3)
# 不进行人脸对齐
result = DeepFace.detectFace(img_path = "images/zhangziyi/0000.jpg",align = False)
print(result.shape)
show_img([result],["zhangziyi"])
(224, 224, 3)
5 人脸特征提取DeepFace.represent
该函数用于将面部图像表示为特征向量,函数接口为:
represent(img_path, model_name = 'VGG-Face', model = None, enforce_detection = True, detector_backend = 'opencv', align = True, normalization = 'base')
输入参数和verify差不多。输出返回图像特征多维向量,特征向量的维度根据模型而变化。
models_name = ["VGG-Face", "Facenet", "Facenet512", "OpenFace",
"DeepFace", "DeepID", "ArcFace", "Dlib", "SFace", 'Ensemble']
result = DeepFace.represent(img_path="images/baijingting/0000.jpg", model_name=models_name[1])
print("特征维度为:{}".format(len(result)))
1/1 [==============================] - 0s 61ms/step
特征维度为:128
当然提取特征可以自己计算距离,设置阈值。示例如下。
# 计算l2距离
def l2_distance(input1: np.ndarray, input2: np.ndarray) -> float:
# 手动计算 np.sqrt(np.sum((result1- result2)**2))
return np.linalg.norm(input1-input2)
# 计算l1距离
def l1_distance(input1: np.ndarray, input2: np.ndarray) -> float:
# 手动计算 np.sum(abs(input1-input2))
return np.linalg.norm(input1-input2, ord=1)
# 计算余弦距离
def IP_distance(input1: np.ndarray, input2: np.ndarray) -> float:
return 1 - np.dot(input1, input2)/np.linalg.norm(input1)/np.linalg.norm(input2)
models_name = ["VGG-Face", "Facenet", "Facenet512", "OpenFace",
"DeepFace", "DeepID", "ArcFace", "Dlib", "SFace", 'Ensemble']
# 提前加载模型,避免重复加载
model_name = models_name[1]
# 创建模型
model = DeepFace.build_model(model_name)
# res1和res3为同一个人
res1 = DeepFace.represent(
img_path="images/baijingting/0000.jpg", model_name=models_name[1], model=model)
res2 = DeepFace.represent(
img_path="images/zhangziyi/0000.jpg", model_name=models_name[1], model=model)
res3 = DeepFace.represent(
img_path="images/baijingting/0001.jpg", model_name=models_name[1], model=model)
# 转换为numpy类型
res1 = np.array(res1)
res2 = np.array(res2)
res3 = np.array(res3)
print("res1与res2的余弦距离为:{}".format(IP_distance(res1,res2)))
print("res1与res3的余弦距离为:{}".format(IP_distance(res1,res3)))
print("res1与res2的l2距离为:{}".format(l2_distance(res1,res2)))
print("res1与res3的l2距离为:{}".format(l2_distance(res1,res3)))
print("res1与res2的l1距离为:{}".format(l1_distance(res1,res2)))
print("res1与res3的l1距离为:{}".format(l1_distance(res1,res3)))
1/1 [==============================] - 0s 54ms/step
1/1 [==============================] - 0s 62ms/step
1/1 [==============================] - 0s 52ms/step
res1与res2的余弦距离为:0.6868675298615137
res1与res3的余弦距离为:0.2002492383897012
res1与res2的l2距离为:12.135816884638682
res1与res3的l2距离为:6.657409646028565
res1与res2的l1距离为:110.3180431430228
res1与res3的l1距离为:58.20380371063948
6 参考
- ??deepface??
- ??deepface_models??
- [深度学习] Python人脸识别库face_recognition使用教程
- ??Python-Study-Notes??
相关推荐
- Linux 网络协议栈_linux网络协议栈
-
前言;更多学习资料(包含视频、技术学习路线图谱、文档等)后台私信《资料》免费领取技术点包含了C/C++,Linux,Nginx,ZeroMQ,MySQL,Redis,fastdfs,MongoDB,Z...
- 揭秘 BPF map 前生今世_bpfdm
-
1.前言众所周知,map可用于内核BPF程序和用户应用程序之间实现双向的数据交换,为BPF技术中的重要基础数据结构。在BPF程序中可以通过声明structbpf_map_def...
- 教你简单 提取fmpeg 视频,音频,字幕 方法
-
ffmpeg提取视频,音频,字幕方法(HowtoExtractVideo,Audio,SubtitlefromOriginalVideo?)1.提取视频(ExtractVi...
- Linux内核原理到代码详解《内核视频教程》
-
Linux内核原理-进程入门进程进程不仅仅是一段可执行程序的代码,通常进程还包括其他资源,比如打开的文件,挂起的信号,内核内部的数据结构,处理器状态,内存地址空间,或多个执行线程,存放全局变量的数据段...
- Linux C Socket UDP编程详解及实例分享
-
1、UDP网络编程主要流程UDP协议的程序设计框架,客户端和服务器之间的差别在于服务器必须使用bind()函数来绑定侦听的本地UDP端口,而客户端则可以不进行绑定,直接发送到服务器地址的某个端口地址。...
- libevent源码分析之bufferevent使用详解
-
libevent的bufferevent在event的基础上自己维护了一个buffer,这样的话,就不需要再自己管理一个buffer了。先看看structbufferevent这个结构体struct...
- 一次解决Linux内核内存泄漏实战全过程
-
什么是内存泄漏:程序向系统申请内存,使用完不需要之后,不释放内存还给系统回收,造成申请的内存被浪费.发现系统中内存使用量随着时间的流逝,消耗的越来越多,例如下图所示:接下来的排查思路是:1.监控系统中...
- 彻底搞清楚内存泄漏的原因,如何避免内存泄漏,如何定位内存泄漏
-
作为C/C++开发人员,内存泄漏是最容易遇到的问题之一,这是由C/C++语言的特性引起的。C/C++语言与其他语言不同,需要开发者去申请和释放内存,即需要开发者去管理内存,如果内存使用不当,就容易造成...
- linux网络编程常见API详解_linux网络编程视频教程
-
Linux网络编程API函数初步剖析今天我们来分析一下前几篇博文中提到的网络编程中几个核心的API,探究一下当我们调用每个API时,内核中具体做了哪些准备和初始化工作。1、socket(family...
- Linux下C++访问web—使用libcurl库调用http接口发送解析json数据
-
一、背景这两天由于一些原因研究了研究如何在客户端C++代码中调用web服务端接口,需要访问url,并传入json数据,拿到返回值,并解析。 现在的情形是远程服务端的接口参数和返回类型都是json的字符...
- 平衡感知调节:“系统如人” 视角下的架构设计与业务稳定之道
-
在今天这个到处都是数字化的时代,系统可不是一堆冷冰冰的代码。它就像一个活生生的“数字人”,没了它,业务根本转不起来。总说“技术要为业务服务”,但实际操作起来问题不少:系统怎么才能快速响应业务需求?...
- 谈谈分布式文件系统下的本地缓存_什么是分布式文件存储
-
在分布式文件系统中,为了提高系统的性能,常常会引入不同类型的缓存存储系统(算法优化所带来的的效果可能远远不如缓存带来的优化效果)。在软件中缓存存储系统一般可分为了两类:一、分布式缓存,例如:Memca...
- 进程间通信之信号量semaphore--linux内核剖析
-
什么是信号量信号量的使用主要是用来保护共享资源,使得资源在一个时刻只有一个进程(线程)所拥有。信号量的值为正的时候,说明它空闲。所测试的线程可以锁定而使用它。若为0,说明它被占用,测试的线程要进入睡眠...
- Qt编写推流程序/支持webrtc265/从此不用再转码/打开新世界的大门
-
一、前言在推流领域,尤其是监控行业,现在主流设备基本上都是265格式的视频流,想要在网页上直接显示监控流,之前的方案是,要么转成hls,要么魔改支持265格式的flv,要么265转成264,如果要追求...
- 30 分钟搞定 SpringBoot 视频推拉流!实战避坑指南
-
30分钟搞定SpringBoot视频推拉流!实战避坑指南在音视频开发领域,SpringBoot凭借其快速开发特性,成为很多开发者实现视频推拉流功能的首选框架。但实际开发中,从环境搭建到流处理优...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- python计时 (73)
- python安装路径 (56)
- python类型转换 (93)
- python进度条 (67)
- python吧 (67)
- python的for循环 (65)
- python格式化字符串 (61)
- python静态方法 (57)
- python列表切片 (59)
- python面向对象编程 (60)
- python 代码加密 (65)
- python串口编程 (77)
- python封装 (57)
- python写入txt (66)
- python读取文件夹下所有文件 (59)
- python操作mysql数据库 (66)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python多态 (60)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)