Python+OpenCV人脸识别(基于LBPH+防照片识别+警报)
off999 2024-10-20 08:09 29 浏览 0 评论
- 目录
废话
1.环境配置(jupyter notebook python 3.6.5)
2.训练集准备
3.代码思路(艹图)
4.人脸识别源码
5.参考文章
6.可能遇到的问题
废话
嗯,开局说点废话,之前用stm32和esp8266改装了下宿舍门,但终究觉得没人脸识别来得舒服,所以就有了这篇文章
1.环境配置(jupyter notebook python 3.6.5)
我这里用的是python3.6,如果你想搭建一个3.6的环境又不想影响原有的,可以用小黑窗(Anaconda Prompt)搭建一个虚拟环境(虚拟环境是一个独立的空间不会影响外界,也不会受外界影响,适合应对不同版本python的需求)
如何搭建虚拟环境可以看看这篇文,简单粗暴
当你搭建好虚拟环境后,第三方库的安装也要安在虚拟环境里,那么如何切换到虚拟环境里呢
打开小黑窗 activate 虚拟环境名字就可以激活了效果如下:
看到小括号就说明已经切换到虚拟环境里了
然后就可以安装所需的第三方库了,eg.Opencv,scipy,request,dlib,安装方法如下:
1)OpenCV
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple opencv-contrib-python==3.4.2.16
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple opencv-python==3.4.2.16
2)scipy
pip install scipy
3) request
pip install request
4) dlib
dlib库的安装比较麻烦,你得先找到对应版本,因为不同python版本对应不同dlib
如果你跟我一样是3.6,那装19.7就行
缺版本或找不到对应版本可以留言
2.训练集准备
这个训练集捏,是借助recognizer.train得到的.yml文件,所以精度没特别高,但是拿来玩玩门锁 还是够用,追求精度可以走深度学习
代码如下:
1)第一步准备照片(即你的人脸像),以“序号.名称”命名,例如“1.xx"这是为了方便切片和保存(即我们可以通过切片将每张照片的脸部特征,序号,名称一一对应)记得你照片的存放路径
2)第二步准备人脸数据集haarcascade_frontalface_alt2.xml,这个是opencv自带的用于检测人脸(注意是检测人脸不是识别人脸)这种做法我觉得有点像RIO ,就是我们在一张图片中匹配人像特征不是从角落开始,而是定位人脸,然后规划一个区域,在区域内进行匹配,这样节省很多时间
3)第三步,跑代码就完事了,然后你会在你指定的文件夹里面找到yml文件,这就是你的训练集
import osimport sysfrom PIL import Imageimport numpy as npimport cv2
def getImageAndLabels(path): #建两个空列表后续存储数据 facesSamples=[] ids=[] imagePaths=[os.path.join(path,f) for f in os.listdir(path)] #检测人脸 face_detector = cv2.CascadeClassifier('E:\jupyter_notebook\practice\haarcascades\haarcascade_frontalface_alt2.xml') #打印数组imagePaths print('路径:',imagePaths) #遍历列表中的图片 for imagePath in imagePaths: #打开图片,灰度 PIL_img=Image.open(imagePath).convert('L') #此时获取的是整张图片的数组 img_numpy=np.array(PIL_img,'uint8') #获取图片人脸特征,相当于rio faces = face_detector.detectMultiScale(img_numpy) #将文件名前的名字转化为ID并记录下来 str_id = os.path.split(imagePath)[1].split('.')[0] id = int(str_id) #id = os.path.split(imagePath)[1].split('.')[0] #预防检测到无面容照片 for x,y,w,h in faces: #把ID写进ids列表中 ids.append(id) #把所画的方框写进facesSamples列表中 facesSamples.append(img_numpy[y:y+h,x:x+w]) #打印脸部特征和id print('id:', id) print('fs:', facesSamples) return facesSamples,ids
if __name__ == '__main__': #图片路径 path='E:/face_dormitory/train' #获取图像数组和id标签数组和姓名 faces,ids=getImageAndLabels(path) #获取训练对象 recognizer=cv2.face.LBPHFaceRecognizer_create() recognizer.train(faces,np.array(ids)) #保存文件 recognizer.write('E:/face_dormitory/opencv/trainer/trainer_xx.yml')
3.代码思路(艹图)
4.人脸识别源码
1)引入库
import cv2import numpy as npimport osimport urllibimport urllib.requestimport hashlibfrom scipy.spatial import distance as distfrom collections import OrderedDictimport argparseimport timeimport dlib
2)加载训练集(这里shape_predictor_68_face_landmarks是用于眨眼检测的)
#加载训练数据集文件recogizer=cv2.face.LBPHFaceRecognizer_create()recogizer.read('E:/face_dormitory/opencv/trainer/trainer_xx.yml')names=[] #建个空id列表warningtime = 0predictor = dlib.shape_predictor('E:/face_dormitory/opencv/shape_predictor_68_face_landmarks.dat')
3)邮件函数(即识别出陌生人或可疑人用于发送抓拍照片的)
import smtplibfrom PIL import Imageimport email # 文件名不可以和引入的库同名from email.mime.image import MIMEImage # 图片类型邮件from email.mime.text import MIMEText # MIME 多用于邮件扩充协议from email.mime.multipart import MIMEMultipart # 创建附件类型 HOST = 'smtp.qq.com' # 调用的邮箱借借口SUBJECT = 'Warning!!!' # 设置邮件标题FROM = '1xxxxxxxxx@qq.com' # 发件人的邮箱需先设置开启smtp协议#TO = '1xxxxxxxxxxx@qq.com' # 设置收件人的邮箱(可以一次发给多个人,用逗号分隔)TO = 'xxxxxxxxxx@qq.com' # 设置收件人的邮箱(可以一次发给多个人,用逗号分隔)message = MIMEMultipart('related') # 邮件信息,内容为空 #相当于信封##related表示使用内嵌资源的形式,将邮件发送给对方 def sendmail(HOST, SUBJECT,FROM,TO,message): # ===========发送信息内容============= message_html = MIMEText('<h1 style="color:red;font-size:100px">Warning!!!</h1><img src="cid:small">', 'html', 'utf-8') message.attach(message_html) # ===========发送图片-============= message_image0 = MIMEText(open('E:/face_dormitory/unidentified/0.jpg', 'rb').read(), 'base64', 'utf-8') message_image0['Content-disposition'] = 'attachment;filename="Suspicious people.jpg"'# 设置图片在附件当中的名字 message_image1 = MIMEText(open('E:/face_dormitory/unidentified/1.jpg', 'rb').read(), 'base64', 'utf-8') message_image1['Content-disposition'] = 'attachment;filename="Suspicious people.jpg"'# 设置图片在附件当中的名字 message.attach(message_image0)# 添加图片文件到邮件-附件中去 message.attach(message_image1)# 添加图片文件到邮件-附件中去 ''' path='E:/face_dormitory/unidentified' imagePaths=[os.path.join(path,f) for f in os.listdir(path)] for imagePath in imagePaths: PIL_img=Image.open(imagePath,'utf-8') PIL_img['Content-disposition'] = 'attachment;filename="Suspicious people.jpg"' message.attach(PIL_img) ''' # ===========删除缓冲图片-============= #os.remove('E:/face_dormitory/unidentified/0.jpg') #os.remove('E:/face_dormitory/unidentified/1.jpg') # ===========发送excel-附件============= #message_xlsx = MIMEText(open('email_demo.xlsx', 'rb').read(), 'base64', 'utf-8')# 将xlsx文件作为内容发送到对方的邮箱读取excel,rb形式读取,对于MIMEText()来说默认的编码形式是base64 对于二进制文件来说没有设置base64,会出现乱码 #message_xlsx['Content-Disposition'] = 'attachment;filename="email_demo_change.xlsx"'# 设置文件在附件当中的名字 #message.attach(message_xlsx)# 添加excel文件到邮件-附件中去 # ===========配置相关-============= message['From'] = FROM # 设置邮件发件人 message['TO'] = TO # 设置邮件收件人 message['Subject'] = SUBJECT # 设置邮件标题 email_client = smtplib.SMTP_SSL()# 获取传输协议 email_client.connect(HOST, '465')# 设置发送域名,端口465 result = email_client.login(FROM, 'xxxxxxx') # qq授权码 print('登录结果', result) # ===========操作============= email_client.sendmail(from_addr=FROM, to_addrs=TO.split(','), msg=message.as_string()) #发送邮件指令 email_client.close()# 关闭邮件发送客户端
写邮件函数我是借鉴这个大佬的,站在巨人肩膀上嘛,总不能什么都靠自己来
4)防照片检测(即眨眼检测)这个也可以用于疲劳检测
详见:i·bug - resources - Facial point annotations
FACIAL_LANDMARKS_68_IDXS = OrderedDict([ ("mouth", (48, 68)), ("right_eyebrow", (17, 22)), ("left_eyebrow", (22, 27)), ("right_eye", (36, 42)), ("left_eye", (42, 48)), ("nose", (27, 36)), ("jaw", (0, 17))])
def eye_aspect_ratio(eye): # 计算距离,竖直的 A = dist.euclidean(eye[1], eye[5]) B = dist.euclidean(eye[2], eye[4]) # 计算距离,水平的 C = dist.euclidean(eye[0], eye[3]) # ear值 ear = (A + B) / (2.0 * C) return ear
def shape_to_np(shape, dtype="int"): # 创建68*2 coords = np.zeros((shape.num_parts, 2), dtype=dtype) # 遍历每一个关键点 # 得到坐标 for i in range(0, shape.num_parts): coords[i] = (shape.part(i).x, shape.part(i).y) return coords
def pervent_to_photo(): # 设置判断参数 EYE_AR_THRESH = 0.3 EYE_AR_CONSEC_FRAMES = 3 # 初始化计数器 COUNTER = 0 TOTAL = 0 # 检测与定位工具 print("loading facial landmark predictor...") detector = dlib.get_frontal_face_detector() #predictor = dlib.shape_predictor('E:/face_dormitory/opencv/shape_predictor_68_face_landmarks.dat') # 分别取两个眼睛区域 (lStart, lEnd) = FACIAL_LANDMARKS_68_IDXS["left_eye"] (rStart, rEnd) = FACIAL_LANDMARKS_68_IDXS["right_eye"] # 读取视频 print("starting video stream thread...") vs = cv2.VideoCapture(0) time.sleep(1.0) # 遍历每一帧 while True: # 预处理 frame = vs.read()[1] if frame is None: break (h, w) = frame.shape[:2] width=1200 r = width / float(w) dim = (width, int(h * r)) frame = cv2.resize(frame, dim, interpolation=cv2.INTER_AREA) gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # 检测人脸 rects = detector(gray, 0) # 遍历每一个检测到的人脸 for rect in rects: # 获取坐标 shape = predictor(gray, rect) shape = shape_to_np(shape) # 分别计算ear值 leftEye = shape[lStart:lEnd] rightEye = shape[rStart:rEnd] leftEAR = eye_aspect_ratio(leftEye) rightEAR = eye_aspect_ratio(rightEye) # 算一个平均的 ear = (leftEAR + rightEAR) / 2.0 # 绘制眼睛区域 leftEyeHull = cv2.convexHull(leftEye) rightEyeHull = cv2.convexHull(rightEye) cv2.drawContours(frame, [leftEyeHull], -1, (0, 255, 0), 1) cv2.drawContours(frame, [rightEyeHull], -1, (0, 255, 0), 1) # 检查是否满足阈值 if ear < EYE_AR_THRESH: COUNTER += 1 else: # 如果连续几帧都是闭眼的,总数算一次 if COUNTER >= EYE_AR_CONSEC_FRAMES: TOTAL += 1 # 重置 COUNTER = 0 # 显示 cv2.putText(frame, "Blinks: {}".format(TOTAL), (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2) cv2.putText(frame, "EAR: {:.2f}".format(ear), (300, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2) cv2.imshow("Frame", frame) #眨眼两次则判断不是照片 if TOTAL >= 2: cv2.imwrite(r"E:/face_dormitory/unidentified/"+"1.jpg",frame) #抓拍 break #空格退出 if ord(' ') == cv2.waitKey(10): break #vs.release() cv2.destroyAllWindows()
5)人脸检测函数
#准备识别的图片def face_detect_demo(img): gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)#转换为灰度 face_detector=cv2.CascadeClassifier('E:\jupyter_notebook\practice\haarcascades\haarcascade_frontalface_alt2.xml') #加入数据集 face=face_detector.detectMultiScale(gray,1.1,5,cv2.CASCADE_SCALE_IMAGE,(100,100),(300,300)) #范围在100*100~300*300判断为脸 for x,y,w,h in face: cv2.rectangle(img,(x,y),(x+w,y+h),color=(0,0,255),thickness=2) cv2.circle(img,center=(x+w//2,y+h//2),radius=w//2,color=(0,255,0),thickness=1) # 人脸识别 ids, confidence = recogizer.predict(gray[y:y + h, x:x + w]) #置信评分 confidence 越大越不可信 if confidence > 50: global warningtime global num warningtime += 1 if warningtime > 100: #cv2.imwrite(r"E:/face_dormitory/unidentified/"+str(num)+".jpg",frame) #抓拍 cv2.imwrite(r"E:/face_dormitory/unidentified/"+"0.jpg",frame) #抓拍 time.sleep(0.1) sendmail(HOST=HOST, SUBJECT=SUBJECT,FROM=FROM,TO=TO,message=message) print('ddddddddddd') #num += 1 warningtime = 0 cv2.putText(img, 'unidentified', (x + 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 255, 0), 1) else: cv2.putText(img,str(names[ids-1]), (x + 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 255, 0), 1) cv2.imshow('result',img)
#取名函数,切片取名,即照片名为1.cj.jpg,取名后就为cjdef name(): #相册路径 path = 'E:/face_dormitory/train' #循环读图 imagePaths=[os.path.join(path,f) for f in os.listdir(path)] for imagePath in imagePaths: #切名字 name = str(os.path.split(imagePath)[1].split('.',2)[1]) names.append(name)
6)主函数
#防照片识别pervent_to_photo() #打开摄像头,0是本地默认,1是外用,我把本地关了把外用开着所以直接0cap=cv2.VideoCapture(0)name()while True: flag,frame=cap.read() if not flag: break face_detect_demo(frame) #空格退出 if ord(' ') == cv2.waitKey(10): breakcv2.destroyAllWindows()cap.release() ?
5.参考文章
感谢大佬1
感谢大佬2
感谢大佬3
6.可能遇到的问题
1.如果你搭建了虚拟环境且里面安装了opencv,但是再引用的时候报错没装库,看看有没有将虚拟环境导入kernel
2.如果你发现我的逻辑有问题,相信你自己,错的肯定是我,请务必怼我,毕竟有探讨才有完善,我也是个小菜鸡
3.如果出现”No module named XXX“,说明安装差库了,请跑到虚拟环境里去安装,虚拟环境是独立的,你之前安装了什么都跟虚拟环境无关
相关推荐
- Python 数据分析——利用Pandas进行分组统计
-
话说天下大势,分久必合,合久必分。数据分析也是如此,我们经常要对数据进行分组与聚合,以对不同组的数据进行深入解读。本章将介绍如何利用Pandas中的GroupBy操作函数来完成数据的分组、聚合以及统计...
- python数据分析:介绍pandas库的数据类型Series和DataFrame
-
安装pandaspipinstallpandas-ihttps://mirrors.aliyun.com/pypi/simple/使用pandas直接导入即可importpandasas...
- 使用DataFrame计算两列的总和和最大值_[python]
-
【如果对您有用,请关注并转发,谢谢~~】最近在处理气象类相关数据的空间计算,在做综合性计算的时候,DataFrame针对每列的统计求和、最大值等较为方便,对某行的两列或多列数据进行求和与最大值等的简便...
- 8-Python内置函数
-
Python提供了丰富的内置函数,这些函数可以直接使用而无需导入任何模块。以下是一些常用的内置函数及其示例:1-print()1-1-说明输出指定的信息到控制台。1-2-例子2-len()2-1-说...
- Python中函数式编程函数: reduce()函数
-
Python中的reduce()函数是一个强大的工具,它通过连续地将指定的函数应用于序列(如列表)来对序列(如列表)执行累积操作。它是functools模块的一部分,这意味着您需要在使用它之...
- 万万没想到,除了香农计划,Python3.11竟还有这么多性能提升
-
众所周知,Python3.11版本带来了较大的性能提升,但是,它具体在哪些方面上得到了优化呢?除了著名的“香农计划”外,它还包含哪些与性能相关的优化呢?本文将带你一探究竟!作者:BeshrKay...
- 最全python3.11版12类75个内置函数大全
-
获取全部内置函数:importbuiltins#导入模块yc=[]#异常属性nc=[]#不可调用fn=[]#内置函数defll(ty=builtins):...
- 软件测试笔试题
-
测试工程师岗位,3-5年,10-14k1.我司有一款产品,类似TeamViewer,向日葵,mstsc,QQ远程控制产品,一个PC客户端产品,请设想一下测试要点。并写出2.写出常用的SQL语句8条,l...
- 备战各大互联网巨头公司招聘会,最全Python面试大全,共300题
-
前言众所周知,越是顶尖的互联网公司在面试这一part的要求就越高,需要你有很好的技术功底、项目经验、一份漂亮的简历,当然还有避免不了的笔试过关。对于Python的工程师来说,全面掌握好有关Python...
- 经典 SQL 数据库笔试题及答案整理
-
马上又是金三银四啦,有蛮多小伙伴在跳槽找工作,但对于年限稍短的软件测试工程师,难免会需要进行笔试,而在笔试中,基本都会碰到一道关于数据库的大题,今天这篇文章呢,就收录了下最近学员反馈上来的一些数据库笔...
- 用Python开发日常小软件,让生活与工作更高效!附实例代码
-
引言:Python如何让生活更轻松?在数字化时代,编程早已不是程序员的专属技能。Python凭借其简洁易学的特点,成为普通人提升效率、解决日常问题的得力工具。无论是自动化重复任务、处理数据,还是开发个...
- 太牛了!102个Python实战项目被我扒到了!建议收藏!
-
挖到宝了!整整102个Python实战项目合集,从基础语法到高阶应用全覆盖,附完整源码+数据集,手把手带你从代码小白变身实战大神!这波羊毛不薅真的亏到哭!超全项目库,学练一站式搞定这份资...
- Python中的并发编程
-
1.Python对并发编程的支持多线程:threading,利用CPU和IO可以同时执行的原理,让CPU不会干巴巴等待IO完成。多进程:multiprocessing,利用多核CPU...
- Python 也有内存泄漏?
-
1.背景前段时间接手了一个边缘视觉识别的项目,大功能已经开发的差不多了,主要是需要是优化一些性能问题。其中比较突出的内存泄漏的问题,而且不止一处,有些比较有代表性,可以总结一下。为了更好地可视化内存...
- python爬虫之多线程threading、多进程、协程aiohttp批量下载图片
-
一、单线程常规下载常规单线程执行脚本爬取壁纸图片,只爬取一页的图片。importdatetimeimportreimportrequestsfrombs4importBeautifu...
你 发表评论:
欢迎- 一周热门
-
-
python 3.8调用dll - Could not find module 错误的解决方法
-
加密Python源码方案 PyArmor(python项目源码加密)
-
Python3.8如何安装Numpy(python3.6安装numpy)
-
大学生机械制图搜题软件?7个受欢迎的搜题分享了
-
编写一个自动生成双色球号码的 Python 小脚本
-
免费男女身高在线计算器,身高计算公式
-
将python文件打包成exe程序,复制到每台电脑都可以运行
-
Python学习入门教程,字符串函数扩充详解
-
Python数据分析实战-使用replace方法模糊匹配替换某列的值
-
Python进度条显示方案(python2 进度条)
-
- 最近发表
- 标签列表
-
- python计时 (54)
- python安装路径 (54)
- python类型转换 (75)
- python进度条 (54)
- python的for循环 (56)
- python串口编程 (60)
- python写入txt (51)
- python读取文件夹下所有文件 (59)
- java调用python脚本 (56)
- python操作mysql数据库 (66)
- python字典增加键值对 (53)
- python获取列表的长度 (64)
- python接口 (63)
- python调用函数 (57)
- python qt (52)
- python人脸识别 (54)
- python斐波那契数列 (51)
- python多态 (60)
- python命令行参数 (53)
- python匿名函数 (59)
- python打印九九乘法表 (65)
- centos7安装python (53)
- python赋值 (62)
- python异常 (69)
- python元祖 (57)